A101548 Number of k such that prime(n) divides the left factorial !k = sum_{i=0..k-1} i!.
0, 1, 1, 1, 0, 1, 3, 1, 0, 2, 1, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 1, 1, 2, 0, 0, 2, 2, 1, 0, 3, 0, 3, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 2, 2, 3, 0, 1, 1, 2, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 4, 1, 2, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1
Offset: 2
Keywords
Examples
a(8) = 3 because 19 divides !7, !12 and !16.
Links
- D. Barsky and B. Benzaghou, Nombres de Bell et somme de factorielles, Journal de Théorie des Nombres de Bordeaux, 16:1-17, 2004.
- Bernd C. Kellner, Some remarks on Kurepa's left factorial, arXiv:math/0410477 [math.NT], 2004.
Crossrefs
Programs
-
Mathematica
nn=1000; s=0; t=Table[s=s+n!, {n, 0, nn}]; Table[p=Prime[i]; Length[Position[t, _?(0==Mod[ #, p]&)]], {i, 2, PrimePi[nn]}]
Comments