A101597 Number of consecutive composite numbers between balanced primes and their lower or upper prime neighbor.
1, 5, 5, 5, 11, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 11, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 11, 5, 5, 5, 11, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 11, 5, 5, 5, 5, 5, 11, 5, 5, 5, 5, 11, 11, 5, 11, 5, 5, 5, 5, 5, 5, 5, 5, 11, 5, 5, 5, 5, 5, 5, 5, 5, 11, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1
Keywords
Examples
53 has the 5 consecutive composites 48,49,50,51,52 below it and the 5 consecutive composites 54,55,56,57,58 above it so 5 is in the second position in the table.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Flatten[Differences /@ Select[Partition[Prime@ Range[1900], 3, 1], #2 == Mean@ {#1, #3} & @@ # &][[All, 1 ;; 2]] - 1] (* Michael De Vlieger, Dec 16 2017 *)
-
PARI
betwixtpr(n) = { local(c1,c2,x,y); for(x=2,n, c1=c2=0; for(y=prime(x-1)+1,prime(x)-1, if(!isprime(y),c1++); ); for(y=prime(x)+1,prime(x+1)-1, if(!isprime(y),c2++); ); if(c1==c2,print1(c1",")) ) }
-
PARI
up_to = 10000; n = 0; forprime(p=1, oo, if((d=(p-precprime(p-1)))==(nextprime(p+1)-p), n++; write("b101597.txt", n, " ", d-1); if(n>=up_to,break))); \\ Antti Karttunen, Dec 16 2017
Formula
Extensions
Offset changed from 2 to 1 by Antti Karttunen, Dec 16 2017
Comments