A101611 a(n) = n! * Sum_{k=ceiling(n/2)..n} 1/k.
1, 3, 5, 26, 94, 684, 3828, 35664, 270576, 3068640, 29400480, 392722560, 4546558080, 69878833920, 948550176000, 16484477184000, 256697973504000, 4976250951168000, 87435019510272000, 1870345490614272000
Offset: 1
Programs
-
Mathematica
Rest@Table[CoefficientList[Series[(Log[1-x]-x*Log[1-x^2])/(x-1),{x, 0, 20}],x][[n]](n-1)!,{n, 1, 20}] (* Benedict W. J. Irwin, Apr 25 2017 *)
-
PARI
a(n) = n! * sum(k=ceil(n/2), n, 1/k); \\ Michel Marcus, Apr 25 2017
-
Python
import math from sympy import factorial def a(n): return factorial(n)*sum([1/k for k in range(int(math.ceil(n/2)), n + 1)]) # Indranil Ghosh, Apr 25 2017
Formula
E.g.f: (log(1 - x) - x*log(1 - x^2))/(x - 1). - Benedict W. J. Irwin, Apr 25 2017