cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101623 Modular binomial transform of 10^n.

Original entry on oeis.org

1, 1, 11, 1, 111, 101, 1011, 1, 10111, 10101, 111011, 10001, 1100111, 1000101, 10001011, 1, 100010111, 100010101, 1100111011, 100010001, 11101100111, 10101000101, 101110001011, 100000001, 1011000010111, 1010000010101, 11100000111011, 1000000010001, 110000001100111
Offset: 0

Views

Author

Paul Barry, Dec 10 2004

Keywords

Crossrefs

A101624 in binary.

Programs

  • PARI
    a(n) = sum(k=0, n, lift(Mod(binomial(k, n-k), 2))*10^(n-k)); \\ Michel Marcus, Jul 31 2025
  • Python
    def A101623(n): return sum(int(not k & ~(n-k))*10**k for k in range((n>>1)+1)) # Chai Wah Wu, Jul 30 2025
    

Formula

a(n) = Sum_{k=0..floor(n/2)} mod(binomial(n-k, k), 2)*10^k.
a(n) = Sum_{k=0..n} mod(binomial(k, n-k), 2)*10^(n-k).

Extensions

More terms from Michel Marcus, Jul 31 2025