A101642 a(n) = Knuth's Fibonacci (or circle) product "3 o n".
8, 13, 21, 29, 34, 42, 47, 55, 63, 68, 76, 84, 89, 97, 102, 110, 118, 123, 131, 136, 144, 152, 157, 165, 173, 178, 186, 191, 199, 207, 212, 220, 228, 233, 241, 246, 254, 262, 267, 275, 280, 288, 296, 301, 309, 317, 322, 330, 335, 343, 351, 356, 364, 369, 377
Offset: 1
Keywords
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 5.
- W. F. Lunnon, Proof of formula, 2008.
Crossrefs
Programs
-
Mathematica
zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfp[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[i + j + 2], {i, Length[z1]}, {j, Length[z2]}]]; (* Robert G. Wilson v, Feb 04 2005 *) Table[ kfp[3, n], {n, 50}] (* Robert G. Wilson v, Feb 04 2005 *) Array[3*Floor[(# + 1)*GoldenRatio] + 2*# - 3 &, 100] (* Paolo Xausa, Mar 23 2024 *)
-
Python
from math import isqrt def A101642(n): return 3*(n+1+isqrt(5*(n+1)**2)>>1)+(n<<1)-3 # Chai Wah Wu, Aug 29 2022
Formula
From Michel Dekking, Dec 23 2019: (Start)
a(n) = 3*A000201(n+1) + 2n - 3.
Extensions
More terms from David Applegate, Jan 26 2005
More terms from Robert G. Wilson v, Feb 04 2005
Comments