A101385 Array read by antidiagonals: T(n,k) = variant of Knuth's Fibonacci (or circle) product of n and k (A101330).
3, 8, 8, 21, 34, 21, 24, 144, 144, 24, 55, 152, 987, 152, 55, 58, 610, 1008, 1008, 610, 58, 63, 618, 6765, 1032, 6765, 618, 63, 144, 644, 6786, 6820, 6820, 6786, 644, 144, 147, 2584, 6909, 6844, 75025, 6844, 6909, 2584, 147, 152, 2592, 46368, 6972, 75080
Offset: 1
Examples
Array begins: 3 8 21 24 55 ... 8 34 144 152 ... 21 144 987 ... 24 152 ... 55 ...
Links
- D. E. Knuth, Fibonacci multiplication, Appl. Math. Lett. 1 (1988), 57-60.
Crossrefs
Programs
-
Mathematica
zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfpv[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[(i + 1)(j + 1)], {i, Length[y]}, {j, Length[z]}]]; (* Robert G. Wilson v, Feb 09 2005 *) Flatten[ Table[ kfpv[i, n - i], {n, 2, 12}, {i, n - 1, 1, -1}]] (* Robert G. Wilson v, Feb 09 2005 *)
Extensions
More terms from David Applegate, Jan 26 2005
Comments