A101691 A modular binomial sum sequence.
1, 1, 2, 1, 3, 1, 2, 2, 5, 1, 2, 2, 4, 2, 4, 4, 9, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 17, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 33, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A048896.
Programs
-
Mathematica
Table[Sum[Mod[Binomial[2n-2,k],2],{k,0,n}],{n,0,100}] (* Harvey P. Dale, Oct 20 2011 *)
-
Python
def A101691(n): return sum((not ~(n-1<<1)&k) for k in range(n+1)) # Chai Wah Wu, Jul 31 2025
Formula
a(n) = Sum_{k=0..n} mod(binomial(2n-2, k), 2).
a(2^n) = A094373(n). a(2^n-1) = 1,1,1,2,4,8,16,...