A101709 Number of partitions of n having nonnegative even rank (the rank of a partition is the largest part minus the number of parts).
1, 0, 2, 1, 3, 2, 7, 5, 11, 10, 20, 20, 34, 35, 57, 62, 92, 104, 151, 171, 237, 274, 371, 433, 571, 670, 870, 1025, 1306, 1543, 1947, 2299, 2864, 3387, 4183, 4943, 6052, 7143, 8688, 10242, 12371, 14566, 17503, 20567, 24583, 28841, 34319, 40188, 47618, 55654, 65700, 76643, 90149, 104968
Offset: 1
Keywords
Examples
a(5)=3 because the partitions of 5 with nonnegative even ranks are 5 (rank=4), 41 (rank=2) and 311 (rank=0).
References
- George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
Formula
G.f.: Sum((-1)^(k+1)*x^((3*k^2-k)/2)/(1+x^k), k=1..infinity)/Product(1-x^k, k=1..infinity). - Vladeta Jovovic, Dec 20 2004
Extensions
More terms, Joerg Arndt, Oct 07 2012
Comments