A101791 Primes of the form 4*k-1 such that 8*k-1 and 16*k-1 are also primes.
11, 179, 359, 719, 1019, 1031, 1451, 1511, 1811, 1931, 2459, 2699, 2819, 3491, 3539, 3911, 5399, 6131, 7079, 7151, 10691, 11171, 11471, 12119, 12899, 12959, 16811, 17159, 18191, 19319, 19991, 20411, 21011, 21179, 22271, 23099, 23819
Offset: 1
Examples
4*3-1 = 11, 8*3-1 = 23 and 16*3-1 = 47 are primes, so 11 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Crossrefs
Programs
-
Mathematica
p4816Q[n_]:=Module[{nn=(n+1)/4},And@@PrimeQ[{n,8nn-1,16nn-1}]]; Select[ 4*Range[6000]-1,p4816Q] (* Harvey P. Dale, Nov 25 2011 *)
-
PARI
is(k) = if(k % 4 == 3, my(m = k\4 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1), 0); \\ Amiram Eldar, May 13 2024
Formula
a(n) = 4*A101790(n) - 1. - Amiram Eldar, May 13 2024