cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101792 Primes of the form 8*k-1 such that 4*k-1 and 16*k-1 are also primes.

Original entry on oeis.org

23, 359, 719, 1439, 2039, 2063, 2903, 3023, 3623, 3863, 4919, 5399, 5639, 6983, 7079, 7823, 10799, 12263, 14159, 14303, 21383, 22343, 22943, 24239, 25799, 25919, 33623, 34319, 36383, 38639, 39983, 40823, 42023, 42359, 44543, 46199, 47639, 48479, 49103, 54959
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*3 - 1 = 11, 8*3 - 1 = 23 and 16*3 - 1 = 47 are primes, so 23 is a term.
		

Crossrefs

Subsequence of A007522.
Subsequences: A101796, A101996.

Programs

  • Mathematica
    8 * Select[Range[10^4], And @@ PrimeQ[2^Range[2, 4]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
  • PARI
    for(k=1,7000,if(isprime(8*k-1)&&isprime(4*k-1)&&isprime(16*k-1),print1(8*k-1,", "))) \\ Hugo Pfoertner, Sep 07 2021

Formula

a(n) = 8*A101790(n) - 1 = 2*A101791(n) + 1. - Amiram Eldar, May 13 2024