A101797 Primes of the form 16*k-1 such that 4*k-1, 8*k-1 and 32*k-1 are also primes.
719, 1439, 10799, 14159, 48479, 68639, 109919, 214559, 231359, 253679, 285599, 298799, 329999, 350159, 405599, 429119, 430799, 451679, 488399, 491279, 507359, 508559, 533999, 557759, 666959, 671039, 918959, 1014719, 1017119, 1148879
Offset: 1
Examples
4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 719 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Crossrefs
Programs
-
Mathematica
16#-1&/@Select[Range[80000],AllTrue[#*2^Range[2,5]-1,PrimeQ]&] (* Harvey P. Dale, Apr 25 2015 *)
-
PARI
is(k) = if(k % 16 == 15, my(m = k\16 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024