A101860 a(n) = (3+n)*(2 + 33*n + n^2)/6.
1, 24, 60, 110, 175, 256, 354, 470, 605, 760, 936, 1134, 1355, 1600, 1870, 2166, 2489, 2840, 3220, 3630, 4071, 4544, 5050, 5590, 6165, 6776, 7424, 8110, 8835, 9600, 10406, 11254, 12145, 13080, 14060, 15086, 16159, 17280, 18450, 19670, 20941
Offset: 0
Examples
Array with first column equal to the 4th row of A008292, and column k defined by partial sums of the preceding column k-1: 1 1 1 1 1 1 1 1 1 1 1 11 12 13 14 15 16 17 18 19 20 21 11 23 36 50 65 81 98 116 135 155 176 1 24 60 110 175 256 354 470 605 760 936 A101860 0 24 84 194 369 625 979 1449 2054 2814 3750 A101861 0 24 108 302 671 1296 2275 3724 5778 8592 12342 A101862 0 24 132 434 1105 2401 4676 8400 14178 22770 35112 0 24 156 590 1695 4096 8772 17172 31350 54120 89232 0 24 180 770 2465 6561 15333 32505 63855 117975 207207 ... ... ... ... ... ... ... ... ... ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[1, 24, 60, 110]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 26 2012
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{1,24,60,110},50] (* or *) CoefficientList[Series[(1+20*x-30*x^2+10*x^3)/(x-1)^4,{x,0,50}],x] (* Vincenzo Librandi, Jun 26 2012 *)
-
PARI
a(n) = (n+3)*(n^2+33*n+2)/6; \\ Altug Alkan, Sep 23 2018
Formula
G.f.: ( 1 + 20*x - 30*x^2 + 10*x^3 ) / (x-1)^4 . - R. J. Mathar, Dec 06 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 26 2012
Comments