cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101893 a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*Pell(k).

Original entry on oeis.org

0, 0, 1, 3, 8, 20, 50, 126, 320, 816, 2084, 5324, 13600, 34736, 88712, 226552, 578560, 1477504, 3773200, 9635888, 24607872, 62842944, 160486688, 409846752, 1046656000, 2672922880, 6826040896, 17432165568, 44517810688, 113688426240
Offset: 0

Views

Author

Paul Barry, Dec 22 2004

Keywords

Comments

Transform of Pell numbers under the mapping g(x)-> (1/(1-x))*g(x^2/((1-x)^2)).
Binomial transform of aerated Pell numbers 0,0,1,0,2,0,5,0,12,...

Crossrefs

Cf. A000129 (Pell numbers), A135248 (partial sums).

Programs

  • Mathematica
    CoefficientList[Series[x^2*(1-x)/(1 - 4*x + 4*x^2 - 2*x^4), {x, 0, 40}], x] (* Vaclav Kotesovec, Jan 05 2015 *)
    LinearRecurrence[{4,-4,0,2},{0,0,1,3},30] (* Harvey P. Dale, Aug 05 2018 *)

Formula

G.f.: x^2*(1-x)/(1 - 4*x + 4*x^2 - 2*x^4).
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-4).
a(n) = sum_{k=0..n} binomial(n, k) * A000129(k/2) * (1+(-1)^k)/2.