A101942 Write n in base 4 as n = b_0 + b_1*4 + b_2*4^2 + b_3*4^3 + ...; then a(n) = Product_{i >= 0} prime(i+1)^b_i.
1, 2, 4, 8, 3, 6, 12, 24, 9, 18, 36, 72, 27, 54, 108, 216, 5, 10, 20, 40, 15, 30, 60, 120, 45, 90, 180, 360, 135, 270, 540, 1080, 25, 50, 100, 200, 75, 150, 300, 600, 225, 450, 900, 1800, 675, 1350, 2700, 5400, 125, 250, 500, 1000, 375, 750, 1500, 3000, 1125
Offset: 0
Examples
a(13) = a(1 + 3*4) = 2^1 * 3^3 = 54. a(29) = a(1 + 3*4 + 1*4^2) = 2^1 * 3^3 * 5^1 = 270.
Programs
-
Maple
a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(convert(n, base, 4)): seq(a(n), n=0..60); # Alois P. Heinz, Aug 31 2024
-
Mathematica
f[n_Integer, base_Integer] /; base >= 2 := Product[ Prime[i]^IntegerDigits[n, base][[Length[IntegerDigits[n, base]] + 1 - i]], {i, Length[IntegerDigits[n, base]]}] Table[f[i, 4], {i, 0, 45}]
-
PARI
f(n, b) = { my(d = digits(n,b), L = #d); prod(i=1, L, prime(i)^d[L+1-i]) } apply(n -> f(n, 4), [0..45]) \\ Satish Bysany, Mar 07 2017
Formula
a(4^k) = prime(k+1).