cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101943 Write n in base 5 as n = b_0 + b_1*5 + b_2*5^2 + b_3*5^3 + ...; then a(n) = Product_{i >= 0} prime(i+1)^b_i.

Original entry on oeis.org

1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 9, 18, 36, 72, 144, 27, 54, 108, 216, 432, 81, 162, 324, 648, 1296, 5, 10, 20, 40, 80, 15, 30, 60, 120, 240, 45, 90, 180, 360, 720, 135, 270, 540, 1080, 2160, 405, 810, 1620, 3240, 6480, 25, 50, 100, 200, 400, 75, 150, 300, 600
Offset: 0

Views

Author

Orges Leka (oleka(AT)students.uni-mainz.de), Dec 21 2004

Keywords

Examples

			a(29) = a(4 + 0*5 + 1*5^2) = 2^4 * 3^0 * 5^1 = 80.
		

Crossrefs

Cf. A019565 (base 2), A101278 (base 3), A101942 (base 4), A054842 (base 10).

Programs

  • Maple
    a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(convert(n, base, 5)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 31 2024
  • Mathematica
    f[n_Integer, base_Integer] /; base >= 2 := Product[ Prime[i]^IntegerDigits[n, base][[Length[IntegerDigits[n, base]] + 1 - i]], {i, Length[IntegerDigits[n, base]]}] Table[f[i, 5], {i, 0, 45}]
  • PARI
    f(n, b) = { my(d = digits(n,b), L = #d); prod(i=1, L, prime(i)^d[L+1-i]) }
    apply(n -> f(n, 5), [0..45]) \\ Satish Bysany, Mar 07 2017