A101980 Matrix logarithm of A008459 (squared entries of Pascal's triangle), read by rows.
0, 1, 0, -1, 4, 0, 4, -9, 9, 0, -33, 64, -36, 16, 0, 456, -825, 400, -100, 25, 0, -9460, 16416, -7425, 1600, -225, 36, 0, 274800, -463540, 201096, -40425, 4900, -441, 49, 0, -10643745, 17587200, -7416640, 1430016, -161700, 12544, -784, 64, 0, 530052880, -862143345, 356140800, -66749760, 7239456
Offset: 0
Examples
Rows begin: [0], [1,0], [ -1,4,0], [4,-9,9,0], [ -33,64,-36,16,0], [456,-825,400,-100,25,0], [ -9460,16416,-7425,1600,-225,36,0], [274800,-463540,201096,-40425,4900,-441,49,0], [ -10643745,17587200,-7416640,1430016,-161700,12544,-784,64,0],... and equal the term-by-term product of column 0: A101981 = {0,1,-1,4,-33,456,-9460,274800,-10643745,...} with the rows of the squared Pascal's triangle (A008459): [0], [1*1^2, 0*1^2], [ -1*1^2, 1*2^2, 0*1^2], [4*1^2, -1*3^2, 1*3^2, 0*1^2], [ -33*1^2, 4*4^2, -1*6^2, 1*4^2, 0*1^2], [456*1^2, -33*5^2, 4*10^2, -1*10^2, 1*5^2, 0*1^2],...
Programs
-
PARI
{T(n,k)=if(n
j,binomial(i-1,j-1)^2))^m/m)[n+1,k+1]))}
Formula
T(n, k) = A101981(n-k)*C(n, k)^2.
Comments