A101983 Numbers that do not occur in A101909 (= number of primes between 2n and 4n).
11, 79, 134, 184, 186, 215, 245, 262, 284, 305, 387, 544, 694, 700, 706, 776, 814, 881, 939, 974, 1002, 1027, 1079, 1104, 1133, 1146, 1184, 1193, 1207, 1354, 1387, 1415, 1441, 1495, 1574, 1587, 1608, 1662, 1690, 1801, 1915, 1987, 2054, 2067, 2104, 2170
Offset: 1
Examples
11 is the first number that does not equal a count of primes between 2n and 4n for some n.
Programs
-
Mathematica
f[n_] := PrimePi[4n] - PrimePi[2n]; t = Union[ Table[ f[n], {n, 12000}]]; Complement[ Range[ t[[ -1]]], t] (* Robert G. Wilson v, Feb 10 2005 *)
-
PARI
bet2n4n(n)={ my( b=vecsort(vector(n, x, my(c=0); forprime(y=2*x+1,4*x-1, c++); c))); for(x=1,n-2, while(b[x+1]-b[x]>1,print1(b[x]++,",")))} \\ It's probably faster to use A101909 instead of forprime(...). Edited and corrected by M. F. Hasler, Sep 29 2019
-
PARI
primecount(a,b)=primepi(b)-primepi(a); v=vector(20000); for(k=1,oo,j=primecount(2*k,4*k);if(j>#v,break,v[j]++)); for(k=1,2170,if(v[k]==0,print1(k,", "))) \\ Hugo Pfoertner, Sep 29 2019
Extensions
More terms from Robert G. Wilson v, Feb 10 2005
Name edited by M. F. Hasler, Sep 29 2019