A101985 Numbers that occur exactly once in A289493 (= number of primes between 2n and 3n).
11, 42, 93, 110, 113, 156, 186, 196, 197, 220, 252, 292, 298, 362, 403, 429, 493, 503, 609, 644, 659, 727, 735, 778, 790, 886, 888, 920, 932, 952, 953, 1008, 1023, 1024, 1079, 1093, 1094, 1100, 1109, 1136, 1165, 1208, 1212, 1213, 1226, 1238, 1250, 1311
Offset: 1
Programs
-
Mathematica
f[n_] := PrimePi[3n] - PrimePi[2n]; t = Split[ Sort[ Table[ f[n], {n, 14000}] ]]; Flatten[ Select[t, Length[ # ] == 1 &]] (* Robert G. Wilson v, Feb 10 2005 *)
-
PARI
bet2n3n(n)={ my(b=vecsort( vector(n,x, my(c=0); forprime(y=2*x+1,3*x-1, c++); c))); for(x=1,n-2, if(b[x+1]>b[x] && b[x+1]A289493 and/or primepi(3n)-primepi(2n) would be faster. Edited and corrected by M. F. Hasler, Sep 29 2019
-
PARI
\\ Size of vector dependent on how pessimistic one is on smoothness of primepi primecount(a, b)=primepi(b)-primepi(a); v=vector(14000); for(k=1, oo, j=primecount(2*k, 3*k); if(j>#v, break, v[j]++)); for(k=1, 1311, if(v[k]==1, print1(k, ", "))) \\ Hugo Pfoertner, Sep 29 2019
Extensions
More terms from Robert G. Wilson v, Feb 10 2005
Name edited by M. F. Hasler, Sep 29 2019