cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101992 Numerator of Sum_{i=2..n} (-1)^i/(i*phi(i)).

Original entry on oeis.org

1, 1, 11, 49, 59, 131, 559, 14533, 15289, 33031, 34417, 441877, 452173, 2224829, 9034451, 152504587, 155227307, 2932982513, 2967901397, 2945730677, 2971126229, 6189267977, 6250111487, 155668689479, 156604743479, 1404034379311, 1411857116311, 5835711932717
Offset: 2

Views

Author

Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004

Keywords

Comments

I conjecture that there exists a limit for Sum_{i>=2} (-1)^i/(i*phi(i)) which is ca. 0.558.

Examples

			a(4) = 11 because Sum_{i=2..4} (-1)^i/(i*phi(i)) = 1/2 - 1/6 + 1/8 = 11/24, and the numerator of 11/24 is 11.
		

Crossrefs

Cf. A000010 (phi), A002618, A065484.

Programs

  • Mathematica
    (* Generating the sum : *) f[n_Integer]/; n >= 2 := Sum[(-1)^i/(i*EulerPhi[i]), {i, 2, n}]; (* Getting the numerator: *) a[n_Integer]/; n >=2 := Numerator[f[n]]; (* Generating the sequence : *) Table[a[n], {n, 2, 20}]
    Accumulate[Table[(-1)^n/(n EulerPhi[n]),{n,2,30}]]//Numerator (* Harvey P. Dale, Mar 19 2023 *)

Formula

a(n) = numerator( Sum_{i=2..n} (-1)^i/(i*phi(i)) ).
Sum_{i>=2} (-1)^i/(i*phi(i)) = 1 - (1/5) * A065484 = 0.5592286807... . - Amiram Eldar, Nov 21 2022

Extensions

More terms from Amiram Eldar, Jul 13 2019