A102067 Numbers k such that k does not divide P(k)! even though P(k)^2 is not a factor of k, where P(k) is the largest prime factor of k.
12, 24, 45, 48, 80, 90, 96, 135, 160, 175, 180, 189, 192, 224, 240, 270, 320, 350, 360, 378, 384, 405, 448, 480, 525, 539, 540, 567, 637, 640, 672, 700, 720, 756, 768, 810, 875, 896, 945, 960, 1050, 1078, 1080, 1120, 1134, 1215, 1274, 1280, 1344, 1375, 1400, 1440
Offset: 1
Keywords
Examples
12 does not divide P(12)! = 3! and 3^2 is not a factor of 12.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Erdős and Ilias Kastanas, Solution 6674: The smallest factorial that is a multiple of n, Amer. Math. Monthly, Vol. 101, No. 2 (1994), p. 179.
- Aubrey J. Kempner, Miscellanea, Amer. Math. Monthly, Vol. 25, No. 5 (1918), pp. 201-210. See Section II, "Concerning the smallest integer m! divisible by a given integer n."
- Eric Weisstein's World of Mathematics, Greatest Prime Factor.
- Index entries for sequences related to factorial numbers.
Programs
-
Mathematica
q[n_] := Module[{p = FactorInteger[n][[-1, 1]]}, !Divisible[n, p^2] && !Divisible[p!, n]]; Select[Range[1500], q] (* Amiram Eldar, Mar 30 2021 *)
-
PARI
isok(n) = {my(f = factor(n)); my(P = f[#f~,1]); (P! % n) && (n % P^2);} \\ Michel Marcus, Sep 16 2015
Extensions
More terms from Michel Marcus, Sep 16 2015
Comments