A102129 Expansion of (1 - x)*(1 + 2*x) / ((1 + x)*(1 - 4*x - x^2)).
1, 4, 15, 66, 277, 1176, 4979, 21094, 89353, 378508, 1603383, 6792042, 28771549, 121878240, 516284507, 2187016270, 9264349585, 39244414612, 166242008031, 704212446738, 2983091794981, 12636579626664, 53529410301635, 226754220833206, 960546293634457
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,5,1).
Crossrefs
Cf. A048875.
Programs
-
Mathematica
CoefficientList[ Series[((-1 + x)(2x + 1))/((1 + x)(x^2 + 4x - 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Mar 16 2005 *)
-
PARI
Vec((1 - x)*(1 + 2*x) / ((1 + x)*(1 - 4*x - x^2)) + O(x^30)) \\ Colin Barker, Jun 06 2017
Formula
a(n) = -(10*(-1)^n + (2-sqrt(5))^n*(-15+sqrt(5)) - (2+sqrt(5))^n*(15+sqrt(5))) / 20. - Colin Barker, Jun 06 2017
Extensions
Corrected and extended by Robert G. Wilson v, Mar 16 2005
Comments