A102169 a(n) = the number of sequences of n integers such that each integer is in the range 0..4 and the sum of the integers is in the range 0..24.
5, 25, 125, 625, 3125, 15625, 78005, 384550, 1829850, 8209410, 34219650, 131875900, 470597480, 1562441800, 4855374080, 14208711350, 39381411950, 103917328350, 262270328730, 635683810740, 1484963848500, 3353799866500
Offset: 1
Examples
a(2)=25 because there are five choices for either integer.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A105163.
Programs
-
Mathematica
Table[Sum[(-1)^k * Binomial[n,k] * Binomial[n+24-5k,n],{k,0,4}],{n,1,20}] (* Vaclav Kotesovec, Nov 01 2014 after Michael David Hirschhorn *)
Formula
From Michael David Hirschhorn, Aug 10 2012: (Start)
a(n) is the sum of the coefficients of 1, x, x^2, ..., x^24 in (1+x+x^2+x^3+x^4)^n = (1-x^5)^n/(1-x)^n.
But this is equal to the coefficient of x^24 in (1-x^5)^n/(1-x)^(n+1) = Sum_{k=0..n} (-1)^k binomial(n,k) x^5k times Sum_{m>=0} binomial(n+m,m) x^m.
Hence a(n) = Sum_{k=0..4} (-1)^k binomial(n,k) binomial(n+24-5k,n).
For example, if n=2, a(2) = 325-420+120 = 25. (End)
G.f.: -x*(x^24 -25*x^23 +300*x^22 -2300*x^21 +12650*x^20 -53060*x^19 +175980*x^18 -472300*x^17 +1042375*x^16 -1915575*x^15 +2962780*x^14 -3894200*x^13 +4384980*x^12 -4251000*x^11 +3547700*x^10 -2533840*x^9 +1532975*x^8 -776575*x^7 +325880*x^6 -111900*x^5 +30750*x^4 -6500*x^3 +1000*x^2 -100*x +5) / (x-1)^25. - Colin Barker, Nov 01 2014
Extensions
Edited by Don Reble, Mar 19 2007
Comments