cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102169 a(n) = the number of sequences of n integers such that each integer is in the range 0..4 and the sum of the integers is in the range 0..24.

Original entry on oeis.org

5, 25, 125, 625, 3125, 15625, 78005, 384550, 1829850, 8209410, 34219650, 131875900, 470597480, 1562441800, 4855374080, 14208711350, 39381411950, 103917328350, 262270328730, 635683810740, 1484963848500, 3353799866500
Offset: 1

Views

Author

Tony Berard (TheMathDude(AT)worldnet.att.net), Feb 16 2005

Keywords

Comments

Changing 4 to 2 and 24 to 3 gives A105163. - Don Reble, Aug 14 2012

Examples

			a(2)=25 because there are five choices for either integer.
		

Crossrefs

Cf. A105163.

Programs

Formula

From Michael David Hirschhorn, Aug 10 2012: (Start)
a(n) is the sum of the coefficients of 1, x, x^2, ..., x^24 in (1+x+x^2+x^3+x^4)^n = (1-x^5)^n/(1-x)^n.
But this is equal to the coefficient of x^24 in (1-x^5)^n/(1-x)^(n+1) = Sum_{k=0..n} (-1)^k binomial(n,k) x^5k times Sum_{m>=0} binomial(n+m,m) x^m.
Hence a(n) = Sum_{k=0..4} (-1)^k binomial(n,k) binomial(n+24-5k,n).
For example, if n=2, a(2) = 325-420+120 = 25. (End)
G.f.: -x*(x^24 -25*x^23 +300*x^22 -2300*x^21 +12650*x^20 -53060*x^19 +175980*x^18 -472300*x^17 +1042375*x^16 -1915575*x^15 +2962780*x^14 -3894200*x^13 +4384980*x^12 -4251000*x^11 +3547700*x^10 -2533840*x^9 +1532975*x^8 -776575*x^7 +325880*x^6 -111900*x^5 +30750*x^4 -6500*x^3 +1000*x^2 -100*x +5) / (x-1)^25. - Colin Barker, Nov 01 2014

Extensions

Edited by Don Reble, Mar 19 2007