cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102190 Irregular triangle read by rows: coefficients of cycle index polynomial for the cyclic group C_n, Z(C_n,x), multiplied by n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 1, 2, 2, 1, 6, 1, 1, 2, 4, 1, 2, 6, 1, 1, 4, 4, 1, 10, 1, 1, 2, 2, 2, 4, 1, 12, 1, 1, 6, 6, 1, 2, 4, 8, 1, 1, 2, 4, 8, 1, 16, 1, 1, 2, 2, 6, 6, 1, 18, 1, 1, 2, 4, 4, 8, 1, 2, 6, 12, 1, 1, 10, 10, 1, 22, 1, 1, 2, 2, 2, 4, 4, 8, 1, 4, 20, 1, 1, 12, 12, 1, 2, 6, 18, 1, 1, 2, 6, 6
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

Row n gives the coefficients of x[k]^{n/k} with increasing divisors k of n.
The length of row n is tau(n) = A000005(n) (number of divisors of n, including 1 and n).
See also table A054523 with zeros if k does not divide n, and reversed rows. [Wolfdieter Lang, May 29 2012]

Examples

			Array begins:
1: [1],
2: [1, 1],
3: [1, 2],
4: [1, 1, 2],
5: [1, 4],
6: [1, 1, 2, 2],
7: [1, 6], ...
The entry for n=6 is obtained as follows:
Z(C_6,x)=(1*x[1]^6 + 1*x[2]^3 + 2*x[3]^2 + 2*x[6]^1)/6.
a(6,1)=phi(1)=1, a(6,2)=phi(2)=1, a(6,3)=phi(3)=2, a(6,4)=phi(6)=2.
		

References

  • N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see Example 5.7).
  • F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994; pp. 181 and 184.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 36, (2.2.10).

Crossrefs

Cf. A054523.

Programs

  • Mathematica
    k[n_, m_] := Divisors[n][[m]]; a[n_, m_] := EulerPhi[k[n, m]]; Flatten[Table[a[n, m], {n, 1, 28}, {m, 1, DivisorSigma[0, n]}]] (* Jean-François Alcover, Jul 25 2011, after given formula *)
    row[n_] := If[n == 1, {1}, n List @@ CycleIndexPolynomial[CyclicGroup[n], Array[x, n]] /. x[] -> 1]; Array[row, 30] // Flatten (* _Jean-François Alcover, Nov 04 2016 *)
  • PARI
    tabf(nn) = for (n=1, nn, print(apply(x->eulerphi(x), divisors(n)))); \\ Michel Marcus, Nov 13 2015
    
  • PARI
    tabf(nn) = for (n=1, nn, print(apply(x->poldegree(x), factor(x^n-1)[,1]))) \\ Michel Marcus, Nov 13 2015

Formula

a(n, m) = phi(k(m)), m=1..tau(n), n>=1, with k(m) the m-th divisor of n, written in increasing order.
Z(C_n, x):=sum(sum(phi(k)*x[k]^{n/k}, k|n))/n, where phi(n)= A000010(n) (Euler's totient function) and k|n means 'k divides n'. Cf. Harary-Palmer reference and MathWorld link.