A102190 Irregular triangle read by rows: coefficients of cycle index polynomial for the cyclic group C_n, Z(C_n,x), multiplied by n.
1, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 1, 2, 2, 1, 6, 1, 1, 2, 4, 1, 2, 6, 1, 1, 4, 4, 1, 10, 1, 1, 2, 2, 2, 4, 1, 12, 1, 1, 6, 6, 1, 2, 4, 8, 1, 1, 2, 4, 8, 1, 16, 1, 1, 2, 2, 6, 6, 1, 18, 1, 1, 2, 4, 4, 8, 1, 2, 6, 12, 1, 1, 10, 10, 1, 22, 1, 1, 2, 2, 2, 4, 4, 8, 1, 4, 20, 1, 1, 12, 12, 1, 2, 6, 18, 1, 1, 2, 6, 6
Offset: 1
Examples
Array begins: 1: [1], 2: [1, 1], 3: [1, 2], 4: [1, 1, 2], 5: [1, 4], 6: [1, 1, 2, 2], 7: [1, 6], ... The entry for n=6 is obtained as follows: Z(C_6,x)=(1*x[1]^6 + 1*x[2]^3 + 2*x[3]^2 + 2*x[6]^1)/6. a(6,1)=phi(1)=1, a(6,2)=phi(2)=1, a(6,3)=phi(3)=2, a(6,4)=phi(6)=2.
References
- N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see Example 5.7).
- F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994; pp. 181 and 184.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 36, (2.2.10).
Links
- Wolfdieter Lang, Table of n, a(n) for n = 1..7069 (suggested by T. D. Noe, Nov 16 2015)
- W. Lang, More terms and comments
- Carl Pomerance, Lola Thompson, Andreas Weingartner, On integers n for which X^n-1 has a divisor of every degree, arXiv:1511.03357 [math.NT], 2015.
- Eric Weisstein's World of Mathematics, Cycle Index.
Crossrefs
Cf. A054523.
Programs
-
Mathematica
k[n_, m_] := Divisors[n][[m]]; a[n_, m_] := EulerPhi[k[n, m]]; Flatten[Table[a[n, m], {n, 1, 28}, {m, 1, DivisorSigma[0, n]}]] (* Jean-François Alcover, Jul 25 2011, after given formula *) row[n_] := If[n == 1, {1}, n List @@ CycleIndexPolynomial[CyclicGroup[n], Array[x, n]] /. x[] -> 1]; Array[row, 30] // Flatten (* _Jean-François Alcover, Nov 04 2016 *)
-
PARI
tabf(nn) = for (n=1, nn, print(apply(x->eulerphi(x), divisors(n)))); \\ Michel Marcus, Nov 13 2015
-
PARI
tabf(nn) = for (n=1, nn, print(apply(x->poldegree(x), factor(x^n-1)[,1]))) \\ Michel Marcus, Nov 13 2015
Formula
a(n, m) = phi(k(m)), m=1..tau(n), n>=1, with k(m) the m-th divisor of n, written in increasing order.
Z(C_n, x):=sum(sum(phi(k)*x[k]^{n/k}, k|n))/n, where phi(n)= A000010(n) (Euler's totient function) and k|n means 'k divides n'. Cf. Harary-Palmer reference and MathWorld link.
Comments