A102310 Square array read by antidiagonals: Fibonacci(k*n).
1, 1, 1, 2, 3, 2, 3, 8, 8, 3, 5, 21, 34, 21, 5, 8, 55, 144, 144, 55, 8, 13, 144, 610, 987, 610, 144, 13, 21, 377, 2584, 6765, 6765, 2584, 377, 21, 34, 987, 10946, 46368, 75025, 46368, 10946, 987, 34, 55, 2584, 46368, 317811, 832040, 832040, 317811, 46368, 2584, 55
Offset: 1
Examples
1, 1, 2, 3, 5, ... 1, 3, 8, 21, 55, ... 2, 8, 34, 144, 610, ... 3, 21, 144, 987, 6765, ... 5, 55, 610, 6765, 75025, ...
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994, p. 294.
Links
- Freddy Barrera, Antidiagonals n = 1..50, flattened
Crossrefs
Programs
-
Magma
/* As triangle */ [[Fibonacci(k*(n-k+1)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jul 04 2019
-
Mathematica
Table[Fibonacci[k*(n-k+1)], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 10 2017 *)
-
Sage
F = fibonacci # A000045 def A(n, k): return F((n-1)*k)*F(k+1) + F((n-1)*k - 1)*F(k) [A(n, k) for d in (1..10) for n, k in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jun 24 2019
Formula
For prime p, the formula holds: Fibonacci(k*p) = Fibonacci(p) * Sum_{i=0..floor((k-1)/2)} C(k-i-1, i)*(-1)^(i*p+i)*Lucas(p)^(k-2i-1).
A(n, k) = F((n-1)*k)*F(k+1) + F((n-1)*k-1)*F(k), where F(n) = A000045(n). - Freddy Barrera, Jun 24 2019