cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102310 Square array read by antidiagonals: Fibonacci(k*n).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 8, 8, 3, 5, 21, 34, 21, 5, 8, 55, 144, 144, 55, 8, 13, 144, 610, 987, 610, 144, 13, 21, 377, 2584, 6765, 6765, 2584, 377, 21, 34, 987, 10946, 46368, 75025, 46368, 10946, 987, 34, 55, 2584, 46368, 317811, 832040, 832040, 317811, 46368, 2584, 55
Offset: 1

Views

Author

Ralf Stephan, Jan 06 2005

Keywords

Examples

			1,  1,   2,    3,     5, ...
1,  3,   8,   21,    55, ...
2,  8,  34,  144,   610, ...
3, 21, 144,  987,  6765, ...
5, 55, 610, 6765, 75025, ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994, p. 294.

Crossrefs

Equals A000045(A003991(k, n)).
Columns include A000045, A001906, A014445, A033888, A102312.
Main diagonal is in A054783. Antidiagonal sums are in A102311.

Programs

  • Magma
    /* As triangle */ [[Fibonacci(k*(n-k+1)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jul 04 2019
  • Mathematica
    Table[Fibonacci[k*(n-k+1)], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 10 2017 *)
  • Sage
    F = fibonacci # A000045
    def A(n, k):
        return F((n-1)*k)*F(k+1) + F((n-1)*k - 1)*F(k)
    [A(n, k) for d in (1..10) for n, k in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jun 24 2019
    

Formula

For prime p, the formula holds: Fibonacci(k*p) = Fibonacci(p) * Sum_{i=0..floor((k-1)/2)} C(k-i-1, i)*(-1)^(i*p+i)*Lucas(p)^(k-2i-1).
A(n, k) = F((n-1)*k)*F(k+1) + F((n-1)*k-1)*F(k), where F(n) = A000045(n). - Freddy Barrera, Jun 24 2019