A102319 A mean binomial transform of the central binomial numbers.
1, 2, 7, 26, 107, 462, 2065, 9438, 43811, 205622, 972917, 4631838, 22157525, 106406978, 512629551, 2476289106, 11989326771, 58163714118, 282662269717, 1375801775214, 6705710840657, 32724623955882, 159880046446611
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A102319 := proc(n) add(binomial(n, k)*binomial(2*k, k)*(1+(-1)^(n-k))/2,k=0..n) ; end proc: # R. J. Mathar, Feb 20 2015
-
Mathematica
CoefficientList[Series[(1/Sqrt[1-6*x+5*x^2]+1/Sqrt[1-2*x-3*x^2])/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 29 2013 *)
-
PARI
x='x+O('x^50); Vec((1/sqrt(1-6*x+5*x^2) + 1/sqrt(1-2*x-3*x^2))/2) \\ G. C. Greubel, Mar 16 2017
Formula
G.f.: (1/sqrt(1-6*x+5*x^2) + 1/sqrt(1-2*x-3*x^2))/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*binomial(2*(n-2*k), n-2*k).
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k)*(1+(-1)^(n-k))/2.
E.g.f.: cosh(x)*exp(2*x)*I_0(2x). - Paul Barry, May 01 2005
a(n) ~ 5^(n+1/2)/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Sep 29 2013
Conjecture: n*(n-1)*a(n) -4*(n-1)*(3*n-4)*a(n-1) +(53*n^2-221*n+232)*a(n-2) +8*(-13*n^2+85*n-134)*a(n-3) +(51*n^2-563*n+1308)*a(n-4) +4*(29*n-93)*(n-4)*a(n-5) -105*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Feb 20 2015
Conjecture:+n*(n-1)*(12*n^2-48*n+41)*a(n) -8*(n-1)*(12*n^3-54*n^2+65*n-17)*a(n-1) +2*(84*n^4-504*n^3+1025*n^2-775*n+131)*a(n-2) +8*(n-2)*(12*n^3-54*n^2+65*n-20)*a(n-3) -15*(n-2)*(n-3)*(12*n^2-24*n+5)*a(n-4)=0. - R. J. Mathar, Feb 20 2015
Comments