cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102319 A mean binomial transform of the central binomial numbers.

Original entry on oeis.org

1, 2, 7, 26, 107, 462, 2065, 9438, 43811, 205622, 972917, 4631838, 22157525, 106406978, 512629551, 2476289106, 11989326771, 58163714118, 282662269717, 1375801775214, 6705710840657, 32724623955882, 159880046446611
Offset: 0

Views

Author

Paul Barry, Jan 04 2005

Keywords

Comments

Second binomial transform of A082758 (with interpolated zeros).

Programs

  • Maple
    A102319 := proc(n)
        add(binomial(n, k)*binomial(2*k, k)*(1+(-1)^(n-k))/2,k=0..n) ;
    end proc: # R. J. Mathar, Feb 20 2015
  • Mathematica
    CoefficientList[Series[(1/Sqrt[1-6*x+5*x^2]+1/Sqrt[1-2*x-3*x^2])/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 29 2013 *)
  • PARI
    x='x+O('x^50); Vec((1/sqrt(1-6*x+5*x^2) + 1/sqrt(1-2*x-3*x^2))/2) \\ G. C. Greubel, Mar 16 2017

Formula

G.f.: (1/sqrt(1-6*x+5*x^2) + 1/sqrt(1-2*x-3*x^2))/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*binomial(2*(n-2*k), n-2*k).
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k)*(1+(-1)^(n-k))/2.
E.g.f.: cosh(x)*exp(2*x)*I_0(2x). - Paul Barry, May 01 2005
a(n) ~ 5^(n+1/2)/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Sep 29 2013
Conjecture: n*(n-1)*a(n) -4*(n-1)*(3*n-4)*a(n-1) +(53*n^2-221*n+232)*a(n-2) +8*(-13*n^2+85*n-134)*a(n-3) +(51*n^2-563*n+1308)*a(n-4) +4*(29*n-93)*(n-4)*a(n-5) -105*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Feb 20 2015
Conjecture:+n*(n-1)*(12*n^2-48*n+41)*a(n) -8*(n-1)*(12*n^3-54*n^2+65*n-17)*a(n-1) +2*(84*n^4-504*n^3+1025*n^2-775*n+131)*a(n-2) +8*(n-2)*(12*n^3-54*n^2+65*n-20)*a(n-3) -15*(n-2)*(n-3)*(12*n^2-24*n+5)*a(n-4)=0. - R. J. Mathar, Feb 20 2015