A102328 Primes p such that the largest prime divisor of p^6 + 1 is less than p.
30977, 69127, 104681, 109807, 114671, 141637, 146057, 160319, 160639, 170371, 171169, 176087, 211723, 216119, 217081, 319321, 381673, 389083, 390151, 416219, 437401, 484609, 492257, 525571, 564713, 565241, 574127, 591601, 612173, 621259
Offset: 1
Keywords
Examples
p = 30977, p^6 + 1 = 883560179055825771003237890 = 2*5*13*37*61*113*181*13921*18517*22189*25741, so the largest prime factor is 25741 < p = 30977.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Prime[Range[60000]], Max[PrimeFactorList[1 + #^6]] < # &] (* Ray Chandler, Jan 08 2005 *)
-
PARI
is(k) = isprime(k) && vecmax(factor(k^6+1)[, 1]) < k; \\ Amiram Eldar, Jun 21 2024
Formula
Solutions to {A006530(p^6+1) < p} where p is a prime number.
Extensions
Extended by Ray Chandler, Jan 08 2005