A102332 Initial prime p introducing a prime sextuplet of consecutive primes as follows: {p, p+10, p+18, p+28, p+36, p+46} with the corresponding prime-difference-pattern is {10,8,10,8,10}.
37861, 39181, 324763, 692743, 810391, 945331, 1047961, 1429573, 1513573, 1540813, 1799071, 3463573, 3861223, 3979201, 4536121, 4641001, 5154343, 5445403, 5874853, 7851583, 8820793, 8961373, 8976403, 9302113, 9673351, 10323133, 11074033, 11136883, 11899333, 13505983
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..200 from Harvey P. Dale)
Crossrefs
Programs
-
Mathematica
tm=TimeUsed[];ta={{0}};Do[g=n;d1=10;d2=8;d3=10;d4=8;d5=10; s1=Prime[n+1]-Prime[n];s2=Prime[n+2]-Prime[n+1]; s3=Prime[n+3]-Prime[n+2];s4=Prime[n+4]-Prime[n+3]; s5=Prime[n+5]-Prime[n+4];If[Equal[s1, d1]&&Equal[s2, d2]&& Equal[s3, d3]&&Equal[s4, d4]&&Equal[s5, d5], Print[{Prime[n], s1, s2, s3, s4, s5}];ta=Append[ta, Prime[n]]], {n, 1, 10000000}] {ta=Delete[ta, 1], {d1, d2}} {g, TimeUsed[]-tm} Transpose[Select[Partition[Prime[Range[650000]],6,1],Differences[#]=={10,8,10,8,10}&]][[1]] (* Harvey P. Dale, Oct 18 2013 *)
-
PARI
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11); forprime(p6 = 13, lim, if(p2 - p1 == 10 && p3 - p2 == 8 && p4 - p3 == 10 && p5 - p4 == 8 && p6 - p5 == 10, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5; p5 = p6);} \\ Amiram Eldar, Feb 18 2025
Formula
a(n) == 1 (mod 6). - Amiram Eldar, Feb 18 2025
Extensions
Definition corrected by Harvey P. Dale, Oct 18 2013
Comments