A102363 Triangle read by rows, constructed by a Pascal-like rule with left edge = 2^k, right edge = 2^(k+1)-1 (k >= 0).
1, 2, 3, 4, 5, 7, 8, 9, 12, 15, 16, 17, 21, 27, 31, 32, 33, 38, 48, 58, 63, 64, 65, 71, 86, 106, 121, 127, 128, 129, 136, 157, 192, 227, 248, 255, 256, 257, 265, 293, 349, 419, 475, 503, 511, 512, 513, 522, 558, 642, 768, 894, 978, 1014, 1023, 1024, 1025, 1035, 1080, 1200, 1410, 1662, 1872, 1992, 2037, 2047
Offset: 0
Examples
This triangle begins: 1 2 3 4 5 7 8 9 12 15 16 17 21 27 31 32 33 38 48 58 63 64 65 71 86 106 121 127 128 129 136 157 192 227 248 255 256 257 265 293 349 419 475 503 511 G.f. of this sequence in flattened form: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 7*x^5 + 8*x^6 + 9*x^7 + 12*x^8 + 15*x^9 + 16*x^10 + 17*x^11 + 21*x^12 + 27*x^13 + 31*x^14 + 32*x^15 + ... such that A(x) = (1+x) + x*(1+x)^2 + x^2*(1+x)^2 + x^3*(1+x)^3 + x^4*(1+x)^3 + x^5*(1+x)^3 + x^6*(1+x)^4 + x^7*(1+x)^4 + x^8*(1+x)^4 + x^9*(1+x)^4 + x^10*(1+x)^5 + x^11*(1+x)^5 + x^12*(1+x)^5 + x^13*(1+x)^5 + x^14*(1+x)^5 + x^15*(1+x)^6 + ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
T:=proc(n,k) if k=0 then 2^n elif k=n then 2^(n+1)-1 else T(n-1,k)+T(n-1,k-1) fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form - Emeric Deutsch, Mar 26 2005
-
Mathematica
t[n_, 0] := 2^n; t[n_, n_] := 2^(n+1)-1; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 15 2013 *)
-
PARI
/* Print in flattened form: Sum_{n>=0} x^n*(1+x)^tr(n) */ {tr(n) = ceil( (sqrt(8*n+9)-1)/2 )} {a(n) = polcoeff( sum(m=0,n, x^m * (1+x +x*O(x^n))^tr(m) ),n)} for(n=0,78, print1(a(n),", ")) \\ Paul D. Hanna, Feb 19 2016
Formula
G.f.: Sum_{n>=0} x^n * (1+x)^tr(n) = Sum_{n>=0} a(n)*x^n, where tr(n) = A002024(n+1) = floor(sqrt(2*n+1) + 1/2). - Paul D. Hanna, Feb 19 2016
G.f.: Sum_{n>=1} x^(n*(n-1)/2) * (1-x^n)/(1-x) * (1+x)^n = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Feb 20 2016
Extensions
More terms from Emeric Deutsch, Mar 26 2005
Comments