cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102379 a(n) is the minimal number of nodes in a binary tree of height n.

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 12, 17, 22, 29, 36, 46, 56, 69, 82, 100, 118, 141, 164, 194, 224, 261, 298, 345, 392, 449, 506, 576, 646, 729, 812, 913, 1014, 1133, 1252, 1394, 1536, 1701, 1866, 2061, 2256, 2481, 2706, 2968, 3230, 3529, 3828, 4174, 4520, 4913
Offset: 1

Views

Author

Mitch Harris, Jan 05 2005

Keywords

Comments

Conjecture: Let b(n) be the number of fixed points of the set of binary partitions of n under Glaisher's function that proves Euler's odd-distinct theorem. Then b(1) = 1 and for n > 1, b(2*n) = b(2*n+1) = 2*a(n). - George Beck, Jul 23 2022

References

  • de Bruijn, N. G., On Mahler's partition problem. Nederl. Akad. Wetensch., Proc. 51, (1948) 659-669 = Indagationes Math. 10, 210-220 (1948).
  • Gonnet, Gaston H.; Olivie, Henk J.; and Wood, Derick, Height-ratio-balanced trees. Comput. J. 26 (1983), no. 2, 106-108.
  • Mahler, Kurt On a special functional equation. J. London Math. Soc. 15, (1940). 115-123.
  • Nievergelt, J.; Reingold, E. M., Binary search trees of bounded balance, SIAM J. Comput. 2 (1973), 33-43.

Crossrefs

Essentially partial sums of A040039.

Programs

  • Python
    from functools import cache
    @cache
    def a(n: int) -> int:
        return a(n - 1) + a(n // 2) + 1 if n > 1 else 0
    print([a(n) for n in range(1, 51)])  # Peter Luschny, Jul 24 2022

Formula

a(n) = a(n-1) + a(floor(n/2)) + 1, a(1) = 0.
a(n) - a(n-1) = A018819(n+1).
G.f. A(x) satisfies (1-x)*A(x) = 2*(1 + x)*B(x^2), where B(x) is the g.f. of A033485.