A102400 Triangle, read by rows, where T(n,k) = Sum_{j=0..k} T(n-1,j)*(j+1)*[(k+1)*(k+2)/2 - j*(j+1)/2] for n>k>0, with T(0,0)=1 and T(n,n) = T(n,n-1) for n>0.
1, 1, 1, 1, 7, 7, 1, 31, 139, 139, 1, 127, 1567, 5711, 5711, 1, 511, 15379, 126579, 408354, 408354, 1, 2047, 143527, 2357431, 15333661, 45605881, 45605881, 1, 8191, 1312219, 40769819, 473433344, 2634441290, 7390305396, 7390305396, 1, 32767
Offset: 0
Examples
T(4,2) = 1567 = 1*6 + 31*10 + 139*9 = T(3,0)*R(0,2) + T(3,1)*R(1,2) + T(3,2)*R(2,2). Rows begin: [1], [1,1], [1,7,7], [1,31,139,139], [1,127,1567,5711,5711], [1,511,15379,126579,408354,408354], [1,2047,143527,2357431,15333661,45605881,45605881],... where the transpose of the recurrence coefficients given by [R^t](n,k) = (k+1)*((n+1)*(n+2)/2 - k*(k+1)/2) form triangle: [1], [3,4], [6,10,9], [10,18,21,16], [15,28,36,36,25],... which equals the matrix square of the triangle: [1], [1,2], [1,2,3], [1,2,3,4], [1,2,3,4,5],...
Programs
-
Mathematica
T[n_, k_] := T[n, k] = If[n
Jean-François Alcover, Dec 15 2014, after PARI *) -
PARI
{T(n,k)=if(n
Comments