cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102403 Number of Dyck paths of semilength n having no ascents of length 2.

Original entry on oeis.org

1, 1, 1, 2, 6, 17, 46, 128, 372, 1109, 3349, 10221, 31527, 98178, 308179, 973911, 3096044, 9894393, 31770247, 102444145, 331594081, 1077022622, 3509197080, 11466710630, 37567784437, 123380796192, 406120349756, 1339571374103
Offset: 0

Views

Author

Emeric Deutsch, Jan 06 2005

Keywords

Comments

Number of Łukasiewicz paths of length n having no (1,1) steps. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: a(4)=6 because we have HHHH, HU(2)DD, U(2)DDH, U(2)DHD, U(2)HDD and U(3)DDD where H=(1,0), U(2)=(1,2), U(3)=(1,3) and D=(1,-1).
Also the number of series-reduced Mathematica expressions with one atom and n + 1 positions. Also the number of rooted plane trees with n + 1 nodes in which there are no binary branchings (nodes of out-degree 2). - Gus Wiseman, Aug 14 2018

Examples

			a(3)=2 because we have UDUDUD and UUUDDD, where U=(1,1) and D=(1,-1); the other three Dyck paths of semilength 3, namely UD(UU)DD, (UU)DDUD and (UU)DUDD, have ascents of length 2 (shown between parentheses).
From _Gus Wiseman_, Aug 14 2018: (Start)
The a(5) = 17 series-reduced Mathematica expressions:
  o[o[][],o]
  o[o,o[][]]
  o[o[],o[]]
  o[o[],o,o]
  o[o,o[],o]
  o[o,o,o[]]
  o[o,o,o,o]
  o[][o[],o]
  o[][o,o[]]
  o[][o,o,o]
  o[][][o,o]
  o[o[],o][]
  o[o,o[]][]
  o[o,o,o][]
  o[][o,o][]
  o[o,o][][]
  o[][][][][]
The a(5) = 17 rooted plane trees with no binary branchings:
  (((((o)))))
  (((ooo)))
  (((o)oo))
  ((o(o)o))
  ((oo(o)))
  ((oooo))
  (((o))oo)
  (o((o))o)
  (oo((o)))
  ((o)(o)o)
  ((o)o(o))
  (o(o)(o))
  ((o)ooo)
  (o(o)oo)
  (oo(o)o)
  (ooo(o))
  (ooooo)
(End)
		

Crossrefs

Programs

  • Maple
    Order:=35: S:=solve(series(V*(1-V)/(1-V^2+V^3),V)=z,V): seq(coeff(S,z^n),n=1..33); # V=zG
    P:= gfun:-rectoproc({(69*n^2+207*n+138)*a(n)+(97*n^2+609*n+830)*a(n+1)+(-38*n^2-342*n-694)*a(n+2)+(37*n^2+333*n+734)*a(n+3)+(2*n^2+18*n+34)*a(n+4)+(-7*n^2-87*n-266)*a(n+5)+(n^2+15*n+56)*a(n+6), a(0)=1,a(1)=1,a(2)=1,a(3)=2,a(4)=6,a(5)=17},a(n),remember):
    seq(P(n),n=0..50); # Robert Israel, Aug 24 2015
  • Mathematica
    a[n_] := 1/(n+1) Sum[Binomial[n+1, j] Binomial[3j-n-3, j-1] (-1)^(n+1-j), {j, n+1, (n+3)/3, -1}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 21 2018, after Vladimir Kruchinin *)
  • Maxima
    a102403(n):=1/n*sum(binomial(n,j)*binomial(3*j-n-2,j-1)*(-1)^(n-j),j,ceiling((n+2)/3),n); /* Vladimir Kruchinin, Mar 07 2011 */
    
  • PARI
    Vec( serreverse( O(x^33) + x/(1+x/(1-x)-x^2) ) /x )  \\ Joerg Arndt, Apr 28 2016

Formula

G.f.: G=G(z) satisfies z^3*G^3 + z(1-z)G^2 - G + 1 = 0.
a(n) = (1/n)*Sum_{j=ceiling((n+2)/3)..n} binomial(n,j)*binomial(3*j-n-2,j-1)*(-1)^(n-j), n > 0. - Vladimir Kruchinin, Mar 07 2011
From Gary W. Adamson, Jan 30 2012: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 0, 1, 1, 0, 0, ...
1, 1, 0, 1, 1, 0, ...
1, 1, 1, 0, 1, 1, ... (End)
(69*n^2+207*n+138)*a(n) + (97*n^2+609*n+830)*a(n+1) + (-38*n^2-342*n-694)*a(n+2) + (37*n^2+333*n+734)*a(n+3) + (2*n^2+18*n+34)*a(n+4) + (-7*n^2-87*n-266)*a(n+5) + (n^2+15*n+56)*a(n+6) = 0. - Robert Israel, Aug 24 2015
Recurrence (of order 4): (n+1)*(n+2)*(28*n^2 - 32*n - 39)*a(n) = 4*(n+1)*(14*n^3 - 9*n^2 - 62*n + 39)*a(n-1) + (140*n^4 - 160*n^3 - 401*n^2 + 469*n - 78)*a(n-2) - 12*(n-2)*(14*n^3 - 9*n^2 - 28*n - 8)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 24*n - 43)*a(n-4). - Vaclav Kotesovec, Mar 06 2016
a(n) ~ s * sqrt((1 - 2*r + 3*r^2*s)/(1 - r + 3*r^2*s)) /(2*sqrt(Pi)*n^(3/2)*r^n), where r = 0.2869905464691794898... and s = 1.850270202250705342... are roots of the system of equations 3*r^3*s^2 = 1 + 2*(-1 + r)*r*s, 1 + r^3*s^3 = s + (-1 + r)*r*s^2. - Vaclav Kotesovec, Mar 06 2016