A102403 Number of Dyck paths of semilength n having no ascents of length 2.
1, 1, 1, 2, 6, 17, 46, 128, 372, 1109, 3349, 10221, 31527, 98178, 308179, 973911, 3096044, 9894393, 31770247, 102444145, 331594081, 1077022622, 3509197080, 11466710630, 37567784437, 123380796192, 406120349756, 1339571374103
Offset: 0
Keywords
Examples
a(3)=2 because we have UDUDUD and UUUDDD, where U=(1,1) and D=(1,-1); the other three Dyck paths of semilength 3, namely UD(UU)DD, (UU)DDUD and (UU)DUDD, have ascents of length 2 (shown between parentheses). From _Gus Wiseman_, Aug 14 2018: (Start) The a(5) = 17 series-reduced Mathematica expressions: o[o[][],o] o[o,o[][]] o[o[],o[]] o[o[],o,o] o[o,o[],o] o[o,o,o[]] o[o,o,o,o] o[][o[],o] o[][o,o[]] o[][o,o,o] o[][][o,o] o[o[],o][] o[o,o[]][] o[o,o,o][] o[][o,o][] o[o,o][][] o[][][][][] The a(5) = 17 rooted plane trees with no binary branchings: (((((o))))) (((ooo))) (((o)oo)) ((o(o)o)) ((oo(o))) ((oooo)) (((o))oo) (o((o))o) (oo((o))) ((o)(o)o) ((o)o(o)) (o(o)(o)) ((o)ooo) (o(o)oo) (oo(o)o) (ooo(o)) (ooooo) (End)
Links
- Robert Israel, Table of n, a(n) for n = 0..1700
- Eric S. Egge and Kailee Rubin, Snow Leopard Permutations and Their Even and Odd Threads, arXiv:1508.05310 [math.CO], 2015.
- Index entries for sequences related to Łukasiewicz
Programs
-
Maple
Order:=35: S:=solve(series(V*(1-V)/(1-V^2+V^3),V)=z,V): seq(coeff(S,z^n),n=1..33); # V=zG P:= gfun:-rectoproc({(69*n^2+207*n+138)*a(n)+(97*n^2+609*n+830)*a(n+1)+(-38*n^2-342*n-694)*a(n+2)+(37*n^2+333*n+734)*a(n+3)+(2*n^2+18*n+34)*a(n+4)+(-7*n^2-87*n-266)*a(n+5)+(n^2+15*n+56)*a(n+6), a(0)=1,a(1)=1,a(2)=1,a(3)=2,a(4)=6,a(5)=17},a(n),remember): seq(P(n),n=0..50); # Robert Israel, Aug 24 2015
-
Mathematica
a[n_] := 1/(n+1) Sum[Binomial[n+1, j] Binomial[3j-n-3, j-1] (-1)^(n+1-j), {j, n+1, (n+3)/3, -1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 21 2018, after Vladimir Kruchinin *)
-
Maxima
a102403(n):=1/n*sum(binomial(n,j)*binomial(3*j-n-2,j-1)*(-1)^(n-j),j,ceiling((n+2)/3),n); /* Vladimir Kruchinin, Mar 07 2011 */
-
PARI
Vec( serreverse( O(x^33) + x/(1+x/(1-x)-x^2) ) /x ) \\ Joerg Arndt, Apr 28 2016
Formula
G.f.: G=G(z) satisfies z^3*G^3 + z(1-z)G^2 - G + 1 = 0.
a(n) = (1/n)*Sum_{j=ceiling((n+2)/3)..n} binomial(n,j)*binomial(3*j-n-2,j-1)*(-1)^(n-j), n > 0. - Vladimir Kruchinin, Mar 07 2011
From Gary W. Adamson, Jan 30 2012: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 0, 1, 1, 0, 0, ...
1, 1, 0, 1, 1, 0, ...
1, 1, 1, 0, 1, 1, ... (End)
(69*n^2+207*n+138)*a(n) + (97*n^2+609*n+830)*a(n+1) + (-38*n^2-342*n-694)*a(n+2) + (37*n^2+333*n+734)*a(n+3) + (2*n^2+18*n+34)*a(n+4) + (-7*n^2-87*n-266)*a(n+5) + (n^2+15*n+56)*a(n+6) = 0. - Robert Israel, Aug 24 2015
Recurrence (of order 4): (n+1)*(n+2)*(28*n^2 - 32*n - 39)*a(n) = 4*(n+1)*(14*n^3 - 9*n^2 - 62*n + 39)*a(n-1) + (140*n^4 - 160*n^3 - 401*n^2 + 469*n - 78)*a(n-2) - 12*(n-2)*(14*n^3 - 9*n^2 - 28*n - 8)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 24*n - 43)*a(n-4). - Vaclav Kotesovec, Mar 06 2016
a(n) ~ s * sqrt((1 - 2*r + 3*r^2*s)/(1 - r + 3*r^2*s)) /(2*sqrt(Pi)*n^(3/2)*r^n), where r = 0.2869905464691794898... and s = 1.850270202250705342... are roots of the system of equations 3*r^3*s^2 = 1 + 2*(-1 + r)*r*s, 1 + r^3*s^3 = s + (-1 + r)*r*s^2. - Vaclav Kotesovec, Mar 06 2016
Comments