A102457 Least k >= 2 with n^(kn) == n (mod kn), also n^(kn-1) == 1 (mod k).
80519, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, 3, 2, 53, 2, 5, 2, 3, 2, 59, 2, 61, 2, 3, 2, 5, 2, 67, 2, 3, 2, 71, 2, 73, 2, 3, 2, 7, 2, 79, 2, 3, 2, 83, 2, 5, 2, 3, 2, 89, 2, 7, 2, 3
Offset: 2
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 2..12620
- Antti Karttunen, Data supplement: n, a(n) computed for n = 2..100000
Crossrefs
Cf. A092067. - R. J. Mathar, Aug 30 2008
Programs
-
Mathematica
Array[Block[{k = 2}, While[PowerMod[#, k # - 1, k] != 1, k++]; k] &, 93, 2] (* Michael De Vlieger, Nov 13 2018 *)
-
PARI
A102457(n) = { for(k=2, oo, if(1==(Mod(n, k)^((k*n)-1)), return(k)); ); } \\ Antti Karttunen, Nov 10 2018
Comments