A102468 a(n)! is the smallest factorial divisible by the numerator of Sum_{k=0...n} 1/k!, with a(0) = 1.
1, 2, 5, 4, 13, 163, 103, 137, 863, 98641, 10687, 31469, 1540901, 522787, 5441, 226871807, 13619, 1276861, 414026539, 2124467, 12670743557, 838025081381, 44659157, 323895443, 337310723185584470837549, 54352957
Offset: 0
Keywords
Examples
Sum_{k=0...3} 1/k! = 8/3 and 4! is the smallest factorial divisible by 8, so a(3) = 4.
Links
- A. J. Kempner, Miscellanea, Amer. Math. Monthly, 25 (1918), 201-210 [ See Section II, "Concerning the smallest integer m! divisible by a given integer n". ]
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007, 2010.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
- Eric Weisstein's World of Mathematics, Smarandache Function.
- Index entries for sequences related to factorial numbers.
Programs
-
Mathematica
Do[l = FactorInteger[Numerator[Sum[1/k!, {k, 0, n}]]]; If[Length[l] == Plus @@ Last /@ l, Print[Max[First /@ l]], Print[l]], {n, 1, 30}] (* Ryan Propper, Jul 31 2005 *) nmax = 30; Clear[a]; Do[f = FactorInteger[ Numerator[ Sum[1/k!, {k, 0, n}] ] ]; a[n] = If[Length[f] == Total[f[[All, 2]] ], Max[f[[All, 1]] ], f[[-1, 1]] ], {n, 0, nmax}]; a[3] = 4; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Sep 16 2015, adapted from Ryan Propper's script *)
-
PARI
a(n) = {j = 1; s = numerator(sum(k=0, n, 1/k!)); while (j! % s, j++); j;} \\ Michel Marcus, Sep 16 2015
Extensions
More terms from Ryan Propper, Jul 31 2005
Comments