A102469 Largest prime factor of numerator of Sum_{k=0...n} 1/k!, with a(0) = 1.
1, 2, 5, 2, 13, 163, 103, 137, 863, 98641, 10687, 31469, 1540901, 522787, 5441, 226871807, 13619, 1276861, 414026539, 2124467, 12670743557, 838025081381, 44659157, 323895443, 337310723185584470837549, 54352957, 11301647941785046703319941, 102505951982728548829
Offset: 0
Keywords
Examples
Sum_{k=0...3} 1/k! = 8/3 and 2 is the largest prime factor 8, so a(3) = 2.
Links
- Daniel Suteu, Table of n, a(n) for n = 0..74
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
- Eric Weisstein's World of Mathematics, Greatest Prime Factor
- Index entries for sequences related to factorial numbers.
Programs
-
Mathematica
FactorInteger[#][[-1,1]]&/@Numerator[Accumulate[1/Range[0,30]!]] (* Harvey P. Dale, Nov 14 2012 *)
-
PARI
a(n) = if(n==0, return(1)); vecmax(factor(numerator(sum(k=0, n, 1/k!)))[,1]); \\ Daniel Suteu, Jun 09 2022
Comments