cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102471 Numbers n such that the denominator of Sum_{k=0 to 2n} 1/k! is (2n)!.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 10, 13, 14, 20, 23, 24, 29, 33, 34, 35, 40, 43, 48, 49, 59, 63, 65, 68, 73, 75, 85, 88, 89, 90, 94, 95, 103, 104, 105, 108, 115, 130, 133, 134, 139, 143, 144, 150, 153, 154, 163, 164, 169, 173, 179, 183, 185, 189, 190, 194, 195, 198, 199, 204
Offset: 1

Views

Author

Jonathan Sondow, Jan 14 2005

Keywords

Comments

n is a member <=> A093101(2n) = 1 <=> A061355(2n) = (2n)! <=> A061355(2n) = A002034(A061355(2n))!.

Examples

			Sum_{k=0 to 6} 1/k! = 1957/720 and 720 = 6! = (2*3)!, so 3 is a member. But Sum_{k=0 to 12} 1/k! = 260412269/95800320 and 95800320 < 12! = (2*6)!, so 6 is not a member.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := (Denominator[Sum[1/k!, {k, 0, 2n}]] == (2n)!); Select[ Range[0, 204], fQ[ # ] &] (* Robert G. Wilson v, Jan 15 2005 *)

Formula

a(n) = A102470(n+1)/2 for n > 0.

Extensions

More terms from Robert G. Wilson v, Jan 15 2005