A102471 Numbers n such that the denominator of Sum_{k=0 to 2n} 1/k! is (2n)!.
0, 1, 2, 3, 4, 5, 8, 9, 10, 13, 14, 20, 23, 24, 29, 33, 34, 35, 40, 43, 48, 49, 59, 63, 65, 68, 73, 75, 85, 88, 89, 90, 94, 95, 103, 104, 105, 108, 115, 130, 133, 134, 139, 143, 144, 150, 153, 154, 163, 164, 169, 173, 179, 183, 185, 189, 190, 194, 195, 198, 199, 204
Offset: 1
Keywords
Examples
Sum_{k=0 to 6} 1/k! = 1957/720 and 720 = 6! = (2*3)!, so 3 is a member. But Sum_{k=0 to 12} 1/k! = 260412269/95800320 and 95800320 < 12! = (2*6)!, so 6 is not a member.
Links
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
- Index entries for sequences related to factorial numbers
Programs
-
Mathematica
fQ[n_] := (Denominator[Sum[1/k!, {k, 0, 2n}]] == (2n)!); Select[ Range[0, 204], fQ[ # ] &] (* Robert G. Wilson v, Jan 15 2005 *)
Formula
a(n) = A102470(n+1)/2 for n > 0.
Extensions
More terms from Robert G. Wilson v, Jan 15 2005
Comments