A102473 Triangle read by rows. Let S(k) be the sequence defined by F(0)=0, F(1)=1, F(n-1) + (n+k)*F(n) = F(n+1). E.g. S(0) = 0,1,1,3,10,43,225,1393,9976,81201, ... Then S(0), S(1), S(2), ... are written next to each other, vertically, with the initial term of each on the next row down. The order of the terms in the rows are then reversed.
1, 1, 1, 1, 2, 3, 1, 3, 7, 10, 1, 4, 13, 30, 43, 1, 5, 21, 68, 157, 225, 1, 6, 31, 130, 421, 972, 1393, 1, 7, 43, 222, 931, 3015, 6961, 9976, 1, 8, 57, 350, 1807, 7578, 24541, 56660, 81201, 1, 9, 73, 520, 3193, 16485, 69133, 223884, 516901, 740785, 1, 10, 91, 738
Offset: 1
Examples
Triangle begins: 0 0 1 0 1 1 0 1 2 3 0 1 3 7 10 0 1 4 13 30 43 ... (the zeros are omitted).
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Programs
-
Haskell
a102473 n k = a102473_tabl !! (n-1) !! (k-1) a102473_row n = a102473_tabl !! (n-1) a102473_tabl = [1] : [1, 1] : f [1] [1, 1] 2 where f us vs x = ws : f vs ws (x + 1) where ws = 1 : zipWith (+) ([0] ++ us) (map (* x) vs) -- Reinhard Zumkeller, Sep 14 2014
Extensions
Entry revised by N. J. A. Sloane, Jul 09 2005
Comments