A102486 a(n) = 4*a(n-1) - 5*a(n-2).
2, 6, 14, 26, 34, 6, -146, -614, -1726, -3834, -6706, -7654, 2914, 49926, 185134, 490906, 1037954, 1697286, 1599374, -2088934, -16352606, -54965754, -138099986, -277571174, -419784766, -291283194, 933791054, 5191580186, 16097365474, 38431560966, 73239416494, 100799861146
Offset: 0
References
- B. M. E. Moret and H. D. Shapiro, Algorithms from P to NP, Benjamin/Cummings, Vol. 1, 1991; p. 65.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5).
Crossrefs
Cf. A099456.
Programs
-
Magma
I:=[2, 6]; [n le 2 select I[n] else 4*Self(n-1)-5*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jan 15 2012
-
Maple
a := proc(n) option remember; if n = 0 then RETURN(2) end if; if n = 1 then RETURN(6) end if; 4*a(n - 1) - 5*a(n - 2); end proc;
-
Mathematica
Column[LinearRecurrence[{4,-5},{2,6},40]] (* Vincenzo Librandi, Jan 15 2012 *)
-
PARI
Vec(2*(1-x)/(1-4*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 15 2012
Formula
G.f.: 2*(1-x)/(1-4*x+5*x^2). [Colin Barker, Jan 14 2012]
Comments