cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A100846 Concatenate (1,n,n,1).

Original entry on oeis.org

1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 110101, 111111, 112121, 113131, 114141, 115151, 116161, 117171, 118181, 119191, 120201, 121211, 122221, 123231, 124241, 125251, 126261, 127271, 128281, 129291, 130301, 131311, 132321
Offset: 0

Views

Author

Parthasarathy Nambi, Jan 07 2005

Keywords

Examples

			For n = 0, concatenate(1,n,n,1) is 1001 = a(0).
For n = 5, concatenate(1,n,n,1) is 1551 = a(5).
For n = 10, concatenate(1,n,n,1) is 110101 = a(10).
		

Crossrefs

Cf. A100896 (3nn3), 7nn7 (A100897), 9nn9 (A102484).
For primes in these sequences: A102496, A102497 (1nn1); A102498, A102499 (3nn3); A102500, A102501 (7nn7); A102502, A102503 (9nn9); A102504 (intersection).

Programs

  • Maple
    seq(seq((10^(2*d+1)+1+(10^(d+1)+10)*n), n=`if`(d>1,10^(d-1),0) .. 10^d-1),d=1..3);
    # Robert Israel, Dec 30 2015, edited for n=0 by M. F. Hasler, Jun 25 2018
  • Mathematica
    For[n = 0, n < 30, n++, l := Floor[Log[10, Min[n,1]] + 1]; gvout := (n*10^l + n)*10 + 1; m := Floor[Log[10, gvout]]; giveout := 10^(m + 1) + out; Print[giveout]] (* Stefan Steinerberger, Jan 27 2006, edited for n=0 by M. F. Hasler, Jun 25 2018 *)
  • PARI
    A100846(n)=eval(Str(1,n,n,1)) \\ M. F. Hasler, Jun 22 2018

Formula

G.f.: 1001 + x*(31-11*x)/(1-x)^2 + Sum_{k>=0} 90*(12*10^(2*k)*(1-x)+10^k*x)*x^(10^k)/(1-x)^2. - Robert Israel, Dec 30 2015

Extensions

More terms from Stefan Steinerberger, Jan 27 2006
Definition reworded and missing 1001 added by M. F. Hasler, Jun 22 2018
Showing 1-1 of 1 results.