A102525 Decimal expansion of log(2)/log(3).
6, 3, 0, 9, 2, 9, 7, 5, 3, 5, 7, 1, 4, 5, 7, 4, 3, 7, 0, 9, 9, 5, 2, 7, 1, 1, 4, 3, 4, 2, 7, 6, 0, 8, 5, 4, 2, 9, 9, 5, 8, 5, 6, 4, 0, 1, 3, 1, 8, 8, 0, 4, 2, 7, 8, 7, 0, 6, 5, 4, 9, 4, 3, 8, 3, 8, 6, 8, 5, 2, 0, 1, 3, 8, 0, 9, 1, 4, 8, 0, 5, 0, 6, 1, 1, 7, 2, 6, 8, 8, 5, 4, 9, 4, 5, 1, 7, 4, 5, 5, 6, 1, 3, 5, 4
Offset: 0
Examples
log(2)/log(3) = 0.63092975357145743709952711434276085429958564...
References
- K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985, see p. 14.
- G. H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 5th Edition, Oxford University Press, ISBN 978-0198531715, 1979, p. 162.
- Nigel Lesmoir-Gordon, Will Rood and Ralph Edney, Introducing Fractal Geometry, Totem Books USA, Lanham, MD, 2001, page 28.
Links
- Turnbull WWW Server, Felix Hausdorff.
- Eric Weisstein's World of Mathematics, Cantor Set
- Eric Weisstein's World of Mathematics, Transcendental Number
- Wikipedia, Cantor set
- Wikipedia, Hausdorff dimension.
- Wikipedia, List of fractals by Hausdorff dimension
- Wikipedia, Koch snowflake
- Wikipedia, Sierpinski carpet
- Index entries for transcendental numbers
Programs
-
Maple
evalf(log(2)/log(3),100); # Bernard Schott, Feb 02 2023
-
Mathematica
RealDigits[Log[3, 2], 10, 111][[1]]
-
PARI
log(2)/log(3) \\ Altug Alkan, Apr 19 2016
Formula
Equals A100831 / 2.
Equals 1 / A020857. - Bernard Schott, Feb 02 2023
Comments