cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A020857 Decimal expansion of log_2(3).

Original entry on oeis.org

1, 5, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1

Views

Author

Keywords

Comments

The fractional part of the binary logarithm of 3 * 2^n (A007283) is the same as that of any number of the form log_2 (A007283(n)) (e.g., log_2(192) = 7.5849625...). Furthermore, a necessary but not sufficient condition for a number to be Fibbinary (A003714) is that the fractional part of its binary logarithm does not exceed that of this number. - Alonso del Arte, Jun 22 2012
Log_2(3)-1 = 0.58496... is the exponent in n^(log_2(3)-1), the asymptotic growth rate of the number of odd coefficients in (1+x)^n mod 2 (Cf. Steven Finch ref.). - Jean-François Alcover, Aug 13 2014
Equals the Hausdorff dimension of the Sierpiński triangle. - Stanislav Sykora, May 27 2015
The complexity of Karatsuba algorithm for the multiplication of two n-digit numbers is O(n^log_2(3)). - Jianing Song, Apr 28 2019

Examples

			log_2(3) = 1.5849625007211561814537389439...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 257.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.16, p. 145.

Crossrefs

Cf. decimal expansion of log_2(m): this sequence, A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Cf. A102525.

Programs

Formula

Equals 1 / A102525. - Bernard Schott, Feb 02 2023

Extensions

Comment generalized by J. Lowell, Apr 26 2014

A154009 Decimal expansion of log_6 (9).

Original entry on oeis.org

1, 2, 2, 6, 2, 9, 4, 3, 8, 5, 5, 3, 0, 9, 1, 6, 8, 2, 6, 2, 5, 9, 5, 0, 7, 7, 2, 3, 0, 6, 4, 3, 5, 8, 2, 4, 7, 0, 6, 9, 7, 1, 6, 2, 8, 1, 0, 8, 5, 7, 9, 3, 1, 4, 3, 2, 2, 1, 0, 1, 0, 1, 4, 2, 3, 4, 6, 7, 1, 5, 9, 6, 2, 9, 1, 8, 5, 5, 4, 3, 9, 2, 3, 3, 6, 6, 9
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.2262943855309168262595077230643582470697162810857931432210...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), this sequence, A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(9)/Log(6); // G. C. Greubel, Sep 14 2018
  • Mathematica
    RealDigits[Log[6, 9], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(9)/log(6) \\ G. C. Greubel, Sep 14 2018
    

Formula

Equals A016632 / A016629 =2/(1+A102525). - R. J. Mathar, Jul 29 2024

A020915 Number of digits in base-3 representation of 2^n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 47
Offset: 0

Views

Author

Keywords

Comments

For n > 0, first differences of A022331. - Michel Marcus, Oct 03 2013

Crossrefs

Cf. A022924 (first differences).

Programs

Formula

a(n) = 1 + floor(n*log_3(2)) = 1 + floor(n*A102525) = 1 + A136409(n). - R. J. Mathar, May 23 2009
a(n) = A081604(A000079(n)). - Reinhard Zumkeller, Jul 12 2011
a(A020914(n)) = n + 1. - Reinhard Zumkeller, Mar 28 2015

Extensions

More terms from James Sellers

A117630 Complement of A056576.

Original entry on oeis.org

2, 5, 8, 10, 13, 16, 18, 21, 24, 27, 29, 32, 35, 37, 40, 43, 46, 48, 51, 54, 56, 59, 62, 65, 67, 70, 73, 75, 78, 81, 83, 86, 89, 92, 94, 97, 100, 102, 105, 108, 111, 113, 116, 119, 121, 124, 127, 130, 132, 135, 138, 140, 143, 146, 149, 151, 154, 157, 159, 162, 165
Offset: 1

Views

Author

Robert G. Wilson v, Apr 08 2006

Keywords

Comments

A Beatty sequence.

Crossrefs

Cf. A102525 (decimal expansion of log_3(2)).
Cf. A254312 (sequence arises as exponents in array definition).

Programs

  • Magma
    [Floor(n*Log(3)/Log(3/2)): n in [1..80]]; // Vincenzo Librandi, Apr 17 2015
    
  • Maple
    seq(floor(n*log[3/2](3)), n=1..100); # Robert Israel, Nov 09 2015
  • Mathematica
    Table[Floor[n*Log[3/2, 3]], {n, 61}]
  • PARI
    vector(100, n, floor(n*log(3)/log(3/2))) \\ Altug Alkan, Nov 10 2015
    
  • Python
    from operator import sub
    from sympy import integer_log
    def A117630(n):
        def f(x): return n+sub(*integer_log(1<Chai Wah Wu, Oct 09 2024

Formula

a(n) = floor(n*log(3)/log(3/2)).
a(n) = A054414(n) - 1. - Ruud H.G. van Tol, May 10 2024

A136409 a(n) = floor(n*log_3(2)).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 42, 43, 44, 44, 45, 46, 46
Offset: 0

Views

Author

Ctibor O. Zizka, Mar 31 2008

Keywords

Comments

a(n) is the exponent of the greatest power of 3 not exceeding 2^n.

Crossrefs

Programs

  • Haskell
    a136409 = floor . (* logBase 3 2) . fromIntegral
    -- Reinhard Zumkeller, Jul 03 2015
    
  • Mathematica
    With[{k = Log[3, 2]}, Array[Floor[k #] &, 75, 0]] (* Michael De Vlieger, Sep 29 2019 *)
  • PARI
    a(n)=logint(2^n,3) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from sympy import integer_log
    def A136409(n): return integer_log(1<Chai Wah Wu, Oct 09 2024

Formula

From Benjamin Lombardo, Sep 08 2019: (Start)
a(A020914(k)) = k.
a(A054414(k)) = a(A054414(k)-1) for k > 0. (End)

A121384 a(n) = ceiling(n*e).

Original entry on oeis.org

0, 3, 6, 9, 11, 14, 17, 20, 22, 25, 28, 30, 33, 36, 39, 41, 44, 47, 49, 52, 55, 58, 60, 63, 66, 68, 71, 74, 77, 79, 82, 85, 87, 90, 93, 96, 98, 101, 104, 107, 109, 112, 115, 117, 120, 123, 126, 128, 131, 134, 136, 139, 142, 145, 147, 150, 153, 155, 158, 161, 164, 166
Offset: 0

Views

Author

Mohammad K. Azarian, Sep 06 2006

Keywords

Comments

Because the difference between e=A001113 and the constant 1/(1-theta), theta = A102525, defined in A054414 is only 0.00877, the difference |a(n)-A054414(n)| increases approximately as 0.00877*n. - R. J. Mathar, Apr 14 2008
A022843(n) <= A022852(n) <= a(n). - Reinhard Zumkeller, Mar 17 2015

Crossrefs

Programs

A355514 Sum of numerator and denominator in a rational approximation j/k of q = log(2)/log(3), such that q - j/k is a new minimum, i.e., q is approximated from below.

Original entry on oeis.org

1, 3, 8, 13, 44, 75, 106, 243, 380, 517, 654, 791, 2510, 4229, 5948, 7667, 9386, 11105, 12824, 14543, 16262, 17981, 19700, 21419, 23138, 24857, 26576, 28295, 30014, 31733, 33452, 35171, 36890, 38609, 40328, 122703, 205078, 492531, 27869189, 166722603, 305576017
Offset: 1

Views

Author

Hugo Pfoertner, Jul 05 2022

Keywords

Crossrefs

Terms are candidates for being in A355240, which shares 3, 8, 13, 44, 75.

Programs

  • PARI
    a355514(upto) = {my(q=log(2)/log(3), dmin=oo);for (m=1, upto, my(n=floor(m*q), qq=n/m, d=q-qq); if (d
    				

A100831 Decimal expansion of log(4)/log(3).

Original entry on oeis.org

1, 2, 6, 1, 8, 5, 9, 5, 0, 7, 1, 4, 2, 9, 1, 4, 8, 7, 4, 1, 9, 9, 0, 5, 4, 2, 2, 8, 6, 8, 5, 5, 2, 1, 7, 0, 8, 5, 9, 9, 1, 7, 1, 2, 8, 0, 2, 6, 3, 7, 6, 0, 8, 5, 5, 7, 4, 1, 3, 0, 9, 8, 8, 7, 6, 7, 7, 3, 7, 0, 4, 0, 2, 7, 6, 1, 8, 2, 9, 6, 1, 0, 1, 2, 2, 3, 4, 5, 3, 7, 7, 0, 9, 8, 9, 0, 3, 4, 9, 1, 1, 2, 2, 7, 0
Offset: 1

Views

Author

Lekraj Beedassy, Jan 07 2005

Keywords

Comments

log_3(4) is the Hausdorff dimension of the Koch snowflake.
A transcendental number. Also the Hausdorff dimension of 2D Cantor dust (for N-dimensional Cantor dust, see A102525). - Stanislav Sykora, Apr 19 2016

Examples

			log(4)/log(3) = 1.26185950714291487419905422868552170859917128...
		

References

  • Martin Gardner, Aha! Gotcha!, "A Pathological Curve", W. H. Freeman, NY, 1982, p. 77.
  • Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, University of Chicago Press, IL, 1983, p. 227.
  • Martin Gardner, The Colossal Book of Mathematics, W. W. Norton, NY, 2001, p. 322.
  • Nigel Lesmoir-Gordon, Will Rood and Ralph Edney, Introducing Fractal Geometry, Totem Books USA, Lanham, MD, 2001, p. 28.
  • Manfred Schroeder, Fractals, Chaos, Power Laws, Freeman, 1991, p. 177.
  • David Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin Books, 1991, pp. 135-136.

Crossrefs

Programs

Formula

Equals 2*A102525. - Stanislav Sykora, Apr 19 2016

Extensions

More terms from Robert G. Wilson v, Jan 07 2005

A152566 Decimal expansion of log_3(10).

Original entry on oeis.org

2, 0, 9, 5, 9, 0, 3, 2, 7, 4, 2, 8, 9, 3, 8, 4, 6, 0, 4, 2, 9, 6, 5, 6, 7, 5, 2, 2, 0, 2, 1, 4, 0, 1, 2, 5, 0, 6, 0, 7, 5, 1, 8, 0, 0, 6, 7, 9, 7, 9, 3, 0, 1, 1, 6, 9, 2, 3, 5, 4, 5, 3, 3, 8, 6, 3, 4, 1, 7, 7, 4, 7, 7, 5, 7, 1, 9, 4, 0, 6, 2, 8, 7, 1, 6, 7, 6, 5, 8, 0, 2, 3, 0, 8, 9, 8, 1, 2, 3
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2009

Keywords

Examples

			2.0959032742893846042965675220214012506075180067979301169235...
		

Crossrefs

Programs

A156301 a(n) = ceiling( n * log_3(2) ) = ceiling(n * 0.6309297535714574371...).

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 47
Offset: 0

Views

Author

Jonathan Vos Post, Feb 07 2009

Keywords

Comments

a(n) is the unique k such that 1/2 <= 3^a(n)/2^(n+1) < 3/2. Equality occurs iff n = 0. See Gorman-Huang and Marks.

Crossrefs

Cf. A020915, A102525. - R. J. Mathar, Feb 19 2009
Cf. A136409.

Programs

  • Haskell
    a156301 = ceiling . (* logBase 3 2) . fromIntegral
    -- Reinhard Zumkeller, Jul 03 2015
    
  • Maple
    seq(ceil(n*log[3](2)),n=0..120) ; # R. J. Mathar, Mar 14 2009
  • Mathematica
    With[{c=Log[3,2]},Ceiling[c*Range[0,80]]] (* Harvey P. Dale, Aug 07 2015 *)
  • Python
    from operator import sub
    from sympy import integer_log
    def A156301(n): return sub(*integer_log(1<Chai Wah Wu, Oct 09 2024

Extensions

More terms from R. J. Mathar, Mar 14 2009
Edited by N. J. A. Sloane, May 23 2009 at the suggestion of Hagen von Eitzen
Showing 1-10 of 19 results. Next