cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A022843 Beatty sequence for e: a(n) = floor(n*e).

Original entry on oeis.org

0, 2, 5, 8, 10, 13, 16, 19, 21, 24, 27, 29, 32, 35, 38, 40, 43, 46, 48, 51, 54, 57, 59, 62, 65, 67, 70, 73, 76, 78, 81, 84, 86, 89, 92, 95, 97, 100, 103, 106, 108, 111, 114, 116, 119, 122, 125, 127, 130, 133, 135, 138, 141, 144, 146, 149, 152, 154, 157, 160
Offset: 0

Views

Author

Keywords

Comments

a(n) <= A022852(n) <= A121384(n). - Reinhard Zumkeller, Mar 17 2015

Crossrefs

Programs

  • Haskell
    a022843 n = a022843_list !! n
    a022843_list = map (floor . (* e) . fromIntegral) [0..] where e = exp 1
    -- Reinhard Zumkeller, Jul 06 2013
    
  • Magma
    [Floor(n*Exp(1)): n in [0..60]]; // G. C. Greubel, Sep 28 2018
  • Maple
    A022843 := proc(n)
        floor(n*exp(1)) ;
    end proc: # R. J. Mathar, Jan 25 2015
  • Mathematica
    Table[ Floor[n*E], {n, 1, 61}]
  • PARI
    for (n=0, 100, print1(floor(n*exp(1)),", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    import math
    from mpmath import mp, e
    mp.dps = 100
    print([int(math.floor(n*e)) for n in range(51)]) # Indranil Ghosh, Mar 21 2017
    

Formula

a(n)/n converges to e because |a(n)/n-e|=|a(n)-n*e|/n < 1/n. - Hieronymus Fischer, Jan 22 2006

A022852 Integer nearest n * e, where e is the natural log base.

Original entry on oeis.org

0, 3, 5, 8, 11, 14, 16, 19, 22, 24, 27, 30, 33, 35, 38, 41, 43, 46, 49, 52, 54, 57, 60, 63, 65, 68, 71, 73, 76, 79, 82, 84, 87, 90, 92, 95, 98, 101, 103, 106, 109, 111, 114, 117, 120, 122, 125, 128, 130, 133, 136, 139, 141, 144, 147, 150, 152, 155, 158, 160
Offset: 0

Views

Author

Keywords

Comments

A022843(n) <= a(n) <= A121384(n). - Reinhard Zumkeller, Mar 17 2015

Examples

			2 * e = 5.436563656918..., so a(2) = 5.
3 * e = 8.1548454853771357..., so a(3) = 8.
4 * e = 10.87312731383618..., so a(4) = 11.
		

Crossrefs

Programs

Extensions

Zero prepended by Harvey P. Dale, Jan 08 2014

A325735 First term of n-th difference sequence of (floor(-k*e)), k >= 0.

Original entry on oeis.org

-3, 0, 0, 1, -4, 10, -20, 36, -64, 120, -239, 484, -946, 1716, -2794, 3872, -3872, 1, 14160, -52478, 143716, -345400, 767976, -1613128, 3226257, -6148960, 11119030, -18874260, 29414650, -39955040, 39955040, 1, -151615948, 575723786, -1611404740, 3936821260
Offset: 1

Views

Author

Clark Kimberling, May 20 2019

Keywords

Comments

Inverse binomial transform of A121384 (values negated). - R. J. Mathar, Jun 17 2019

Crossrefs

Cf. A325664.

Programs

  • Mathematica
    Table[First[Differences[Table[Floor[-E*n], {n, 0, 50}], n]], {n, 1, 50}]

A319795 a(n) = n^(n+1)/(n-1)^n for n>1, rounded to nearest integer.

Original entry on oeis.org

8, 10, 13, 15, 18, 21, 23, 26, 29, 31, 34, 37, 40, 42, 45, 48, 50, 53, 56, 59, 61, 64, 67, 69, 72, 75, 78, 80, 83, 86, 88, 91, 94, 97, 99, 102, 105, 107, 110, 113, 116, 118, 121, 124, 126, 129, 132, 135, 137, 140, 143, 145, 148, 151, 154, 156, 159, 162, 164
Offset: 2

Views

Author

Jim Singh, Sep 28 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(round(n^(n+1)/(n-1)^n),n=1..100); # Muniru A Asiru, Sep 28 2018
  • PARI
    for(n=2,30,print1(round(n^(n+1)/(n-1)^n),","))
Showing 1-4 of 4 results.