A047999 Sierpiński's [Sierpinski's] triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 2.
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
Offset: 0
Examples
Triangle begins: 1, 1,1, 1,0,1, 1,1,1,1, 1,0,0,0,1, 1,1,0,0,1,1, 1,0,1,0,1,0,1, 1,1,1,1,1,1,1,1, 1,0,0,0,0,0,0,0,1, 1,1,0,0,0,0,0,0,1,1, 1,0,1,0,0,0,0,0,1,0,1, 1,1,1,1,0,0,0,0,1,1,1,1, 1,0,0,0,1,0,0,0,1,0,0,0,1, ...
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
- John W. Milnor and James D. Stasheff, Characteristic Classes, Princeton University Press, 1974, pp. 43-49 (sequence appears on p. 46).
- H.-O. Peitgen, H. Juergens and D. Saupe: Chaos and Fractals (Springer-Verlag 1992), p. 408.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10584 [First 144 rows, flattened; first 50 rows from T. D. Noe].
- J.-P. Allouche and V. Berthe, Triangle de Pascal, complexité et automates, Bulletin of the Belgian Mathematical Society Simon Stevin 4.1 (1997): 1-24.
- J.-P. Allouche, F. v. Haeseler, H.-O. Peitgen and G. Skordev, Linear cellular automata, finite automata and Pascal's triangle, Discrete Appl. Math. 66 (1996), 1-22.
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.],
- J. Baer, Explore patterns in Pascal's Triangle
- Valentin Bakoev, Fast Bitwise Implementation of the Algebraic Normal Form Transform, Serdica J. of Computing 11 (2017), No 1, 45-57.
- Valentin Bakoev, Properties and links concerning M_n
- Thomas Baruchel, Flattening Karatsuba's Recursion Tree into a Single Summation, SN Computer Science (2020) Vol. 1, Article No. 48.
- Thomas Baruchel, A non-symmetric divide-and-conquer recursive formula for the convolution of polynomials and power series, arXiv:1912.00452 [math.NT], 2019.
- A. Bogomolny, Dot Patterns and Sierpinski Gasket
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see pp. 130-132.
- Paul Bradley and Peter Rowley, Orbits on k-subsets of 2-transitive Simple Lie-type Groups, 2014.
- E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 9.
- S. Butkevich, Pascal Triangle Applet
- David Callan, Sierpinski's triangle and the Prouhet-Thue-Morse word, arXiv:math/0610932 [math.CO], 2006.
- B. Cherowitzo, Pascal's Triangle using Clock Arithmetic, Part I
- B. Cherowitzo, Pascal's Triangle using Clock Arithmetic, Part II
- C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, arXiv:1411.1334 [math.NT], 2014; Journal of Difference Equations and Applications, Vol. 20, #11, 2014.
- Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- Brady Haran, Chaos Game, Numberphile video, YouTube (April 27, 2017).
- I. Kobayashi et al., Pascal's Triangle
- Dr. Math, Regular polygon formulas [Broken link?]
- Y. Moshe, The distribution of elements in automatic double sequences, Discr. Math., 297 (2005), 91-103.
- National Curve Bank, Sierpinski Triangles
- Hieu D. Nguyen, A Digital Binomial Theorem, arXiv:1412.3181 [math.NT], 2014.
- S. Northshield, Sums across Pascal's triangle modulo 2, Congressus Numerantium, 200, pp. 35-52, 2010.
- A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
- F. Richman, Javascript for computing Pascal's triangle modulo n. Go to this page, then under "Modern Algebra and Other Things", click "Pascal's triangle modulo n".
- Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization, J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29. Also arXiv:1011.6083, 2010.
- N. J. A. Sloane, Illustration of rows 0 to 32 (encoignure style)
- N. J. A. Sloane, Illustration of rows 0 to 64 (encoignure style)
- N. J. A. Sloane, Illustration of rows 0 to 128 (encoignure style)
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Eric Weisstein's World of Mathematics, Sierpiński Sieve, Rule 60, Rule 102
- Index entries for sequences related to cellular automata
- Index entries for triangles and arrays related to Pascal's triangle
- Index entries for sequences generated by sieves
Crossrefs
Sequences based on the triangles formed by reading Pascal's triangle mod m: (this sequence) (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Cf. A007318, A054431, A001317, A008292, A083093, A034931, A034930, A008975, A034932, A166360, A249133, A064194, A227133.
From Johannes W. Meijer, Jun 05 2011: (Start)
A106344 is a skew version of this triangle.
Programs
-
Haskell
import Data.Bits (xor) a047999 :: Int -> Int -> Int a047999 n k = a047999_tabl !! n !! k a047999_row n = a047999_tabl !! n a047999_tabl = iterate (\row -> zipWith xor ([0] ++ row) (row ++ [0])) [1] -- Reinhard Zumkeller, Dec 11 2011, Oct 24 2010
-
Magma
A047999:= func< n,k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >; [A047999(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 03 2024
-
Maple
# Maple code for first M rows (here M=10) - N. J. A. Sloane, Feb 03 2016 ST:=[1,1,1]; a:=1; b:=2; M:=10; for n from 2 to M do ST:=[op(ST),1]; for i from a to b-1 do ST:=[op(ST), (ST[i+1]+ST[i+2]) mod 2 ]; od: ST:=[op(ST),1]; a:=a+n; b:=a+n; od: ST; # N. J. A. Sloane # alternative A047999 := proc(n,k) modp(binomial(n,k),2) ; end proc: seq(seq(A047999(n,k),k=0..n),n=0..12) ; # R. J. Mathar, May 06 2016
-
Mathematica
Mod[ Flatten[ NestList[ Prepend[ #, 0] + Append[ #, 0] &, {1}, 13]], 2] (* Robert G. Wilson v, May 26 2004 *) rows = 14; ca = CellularAutomaton[60, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *) Mod[#,2]&/@Flatten[Table[Binomial[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 26 2019 *) A047999[n_,k_]:= Boole[BitAnd[n-k,k]==0]; Table[A047999[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2025 *)
-
PARI
\\ Recurrence for Pascal's triangle mod p, here p = 2. p = 2; s=13; T=matrix(s,s); T[1,1]=1; for(n=2,s, T[n,1]=1; for(k=2,n, T[n,k] = (T[n-1,k-1] + T[n-1,k])%p )); for(n=1,s,for(k=1,n,print1(T[n,k],", "))) \\ Gerald McGarvey, Oct 10 2009
-
PARI
A011371(n)=my(s);while(n>>=1,s+=n);s T(n,k)=A011371(n)==A011371(k)+A011371(n-k) \\ Charles R Greathouse IV, Aug 09 2013
-
PARI
T(n,k)=bitand(n-k,k)==0 \\ Charles R Greathouse IV, Aug 11 2016
-
Python
def A047999_T(n,k): return int(not ~n & k) # Chai Wah Wu, Feb 09 2016
Formula
Lucas's Theorem is that T(n,k) = 1 if and only if the 1's in the binary expansion of k are a subset of the 1's in the binary expansion of n; or equivalently, k AND NOT n is zero, where AND and NOT are bitwise operators. - Chai Wah Wu, Feb 09 2016 and N. J. A. Sloane, Feb 10 2016
T(n,k) = T(n-1,k-1) XOR T(n-1,k), 0 < k < n; T(n,0) = T(n,n) = 1. - Reinhard Zumkeller, Dec 13 2009
T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod 2 = |T(n-1,k-1) - T(n-1,k)|, 0 < k < n; T(n,0) = T(n,n) = 1. - Rick L. Shepherd, Feb 23 2018
From Vladimir Shevelev, Dec 31 2013: (Start)
For polynomial {s_n(x)} we have
s_0(x)=1; for n>=1, s_n(x) = Product_{i=1..A000120(n)} (x^(2^k_i) + 1),
if the binary expansion of n is n = Sum_{i=1..A000120(n)} 2^k_i;
G.f. Sum_{n>=0} s_n(x)*z^n = Product_{k>=0} (1 + (x^(2^k)+1)*z^(2^k)) (0
Let x>1, t>0 be real numbers. Then
Sum_{n>=0} 1/s_n(x)^t = Product_{k>=0} (1 + 1/(x^(2^k)+1)^t);
Sum_{n>=0} (-1)^A000120(n)/s_n(x)^t = Product_{k>=0} (1 - 1/(x^(2^k)+1)^t).
In particular, for t=1, x>1, we have
Sum_{n>=0} (-1)^A000120(n)/s_n(x) = 1 - 1/x. (End)
From Valentin Bakoev, Jul 11 2020: (Start)
(See my comment about the matrix M_n.) Denote by T(i,j) the number in the i-th row and j-th column of M_n (0 <= i, j < 2^n). When i>=j, T(i,j) is the j-th number in the i-th row of the Sierpinski's triangle. For given i and j, we denote by k the largest integer of the type k=2^m and k
T(i,0) = T(i,i) = 1, or
T(i,j) = 0 if i < j, or
T(i,j) = T(i-k,j), if j < k, or
T(i,j) = T(i-k,j-k), if j >= k.
Thus, for given i and j, T(i,j) can be computed in O(log_2(i)) steps. (End)
Extensions
Additional links from Lekraj Beedassy, Jan 22 2004
A020914 Number of digits in the base-2 representation of 3^n.
1, 2, 4, 5, 7, 8, 10, 12, 13, 15, 16, 18, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 43, 45, 46, 48, 50, 51, 53, 54, 56, 58, 59, 61, 62, 64, 65, 67, 69, 70, 72, 73, 75, 77, 78, 80, 81, 83, 85, 86, 88, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 105, 107
Offset: 0
Comments
Also, numbers k such that the first digit in the ternary expansion of 2^k is 1. - Mohammed Bouayoun (Mohammed.bouayoun(AT)sanef.com), Apr 24 2006
a(n) is the smallest integer such that n/a(n) < log_2(3). - Trevor G. Hyde (thyde12(AT)amherst.edu), Jul 31 2008
This sequence represents allowable values of the "dropping time" in the Collatz (3x+1) problem when iterated according to the function f(n) := n/2 if n is even, (3n+1)/2 otherwise, as tabulated in A126241. There is one exception, A126241(1), which has been set to zero by convention. - K. Spage, Oct 22 2009
An integer k is a term of A020914 if and only if floor(k*(1 + log(2)/log(3))) - abs(k-1)*(1 + log(2)/log(3)) - 1 >= 0. - K. Spage, Oct 22 2009
Also smallest k such that ceiling(2^k / 3^n) = 2. - Michel Lagneau, Jan 31 2012
For n > 0, first differences of A022330. - Michel Marcus, Oct 03 2013
Also the number of powers of two less than or equal to 3^n. - Robert G. Wilson v, May 25 2014
Except for 1, A020914 is the complement of A054414 and therefore these two form a pair of Beatty sequences. - Robert G. Wilson v, May 25 2014
Links
- T. D. Noe, R. J. Mathar, Table of n, a(n) for n = 0..20000
- Mike Winkler, On the structure and the behaviour of Collatz 3n + 1 sequences, 2014.
- Mike Winkler, New results on the stopping time behaviour of the Collatz 3x + 1 function, arXiv:1504.00212 [math.GM], 2015.
- Mike Winkler, The algorithmic structure of the finite stopping time behavior of the 3x + 1 function, arXiv:1709.03385 [math.GM], 2017.
Crossrefs
Programs
-
Haskell
a020914 = a070939 . a000244 -- Reinhard Zumkeller, Jun 30 2013
-
Maple
A020914 :=n->nops(convert(3^n,base,2)): seq(A020914(n),n=0..70); # Emeric Deutsch, Apr 30 2006 seq(ilog2(3^n)+1, n=0 .. 100); # Robert Israel, Dec 12 2014
-
Mathematica
Table[Length[IntegerDigits[3^n, 2]], {n, 0, 100}] (* Stefan Steinerberger, Apr 19 2006 *) a[n_] := Floor[ Log2[3^n] + 1]; Array[a, 105, 0] (* Robert G. Wilson v, May 25 2014 *)
-
PARI
for(n=0,100,print1(floor(1+n*log(3)/log(2)),",")) \\ K. Spage, Oct 22 2009
-
PARI
a(n)=exponent(3^n)+1 \\ Charles R Greathouse IV, Nov 03 2022
-
Python
def A020914(n): return (3**n).bit_length() # Chai Wah Wu, Oct 09 2024
Formula
a(n) = floor(1 + n*log(3)/log(2)). - K. Spage, Oct 22 2009
A098294(n) = a(n) + n for n > 0. - Mike Winkler, Dec 31 2010
a(n) = A070939(A000244(n)) = length of n-th row in triangle A227048. - Reinhard Zumkeller, Jun 30 2013
a(n) = 1 + floor(n*log_2(3)) = 1 + A056576(n) = 1 + floor(n*A020857). - L. Edson Jeffery, Dec 12 2014
A020915(a(n)) = n + 1. - Reinhard Zumkeller, Mar 28 2015
Extensions
More terms from Stefan Steinerberger, Apr 19 2006
A020862 Decimal expansion of log_2(10).
3, 3, 2, 1, 9, 2, 8, 0, 9, 4, 8, 8, 7, 3, 6, 2, 3, 4, 7, 8, 7, 0, 3, 1, 9, 4, 2, 9, 4, 8, 9, 3, 9, 0, 1, 7, 5, 8, 6, 4, 8, 3, 1, 3, 9, 3, 0, 2, 4, 5, 8, 0, 6, 1, 2, 0, 5, 4, 7, 5, 6, 3, 9, 5, 8, 1, 5, 9, 3, 4, 7, 7, 6, 6, 0, 8, 6, 2, 5, 2, 1, 5, 8, 5, 0, 1, 3, 9, 7, 4, 3, 3, 5, 9, 3, 7, 0, 1, 5
Offset: 1
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 55.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for transcendental numbers.
Crossrefs
Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), this sequence, A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Programs
-
Mathematica
RealDigits[Log[2, 10], 10, 100][[1]] (* Vincenzo Librandi, Aug 29 2013 *)
-
PARI
log(10)/log(2) \\ Charles R Greathouse IV, Aug 06 2020
Formula
Equals 1+A020858. - R. J. Mathar, Oct 25 2008
Extensions
Definition improved by J. Lowell, May 03 2014
A020858 Decimal expansion of log_2(5).
2, 3, 2, 1, 9, 2, 8, 0, 9, 4, 8, 8, 7, 3, 6, 2, 3, 4, 7, 8, 7, 0, 3, 1, 9, 4, 2, 9, 4, 8, 9, 3, 9, 0, 1, 7, 5, 8, 6, 4, 8, 3, 1, 3, 9, 3, 0, 2, 4, 5, 8, 0, 6, 1, 2, 0, 5, 4, 7, 5, 6, 3, 9, 5, 8, 1, 5, 9, 3, 4, 7, 7, 6, 6, 0, 8, 6, 2, 5, 2, 1, 5, 8, 5, 0, 1, 3, 9, 7, 4, 3, 3, 5, 9, 3, 7, 0, 1, 5
Offset: 1
Comments
Equals the Hausdorff dimension of the Sierpinski fractal square-based pyramid, when each square-based pyramid is replaced by 5 half-size such square-based pyramids (see IREM link). - Bernard Schott, Nov 30 2022
Examples
2.3219280...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- IREM Paris-Nord, La pyramide de Sierpinski (in French).
- Wikipedia, List of fractals by Hausdorff dimension (see Fractal pyramid).
- Index entries for transcendental numbers
Crossrefs
Cf. decimal expansion of log_2(m): A020857 (m=3), this sequence, A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Programs
-
Mathematica
RealDigits[Log[2,5],10,120][[1]] (* Harvey P. Dale, Oct 20 2011 *)
-
PARI
log(5)/log(2) \\ Charles R Greathouse IV, Aug 06 2020
Extensions
Definition improved by J. Lowell, May 03 2014
A155921 Decimal expansion of log_2(24) = 3+log_2(3).
4, 5, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1
Comments
This is the third term in the sequence of real numbers discussed in A229168-A229170. - N. J. A. Sloane, Sep 28 2013
Examples
4.5849625007211561814537389439478165087598144076924810604557...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for transcendental numbers
Crossrefs
Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), this sequence.
Cf. A229177.
Programs
-
Mathematica
RealDigits[Log[2,24],10,120][[1]] (* Harvey P. Dale, Dec 07 2011 *)
Formula
A056576 Highest k with 2^k <= 3^n.
0, 1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 64, 66, 68, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 91, 93, 95, 96, 98, 99, 101, 103, 104, 106, 107
Offset: 0
Keywords
Examples
a(3)=4 because 3^3=27 and 2^4=16 is power of 2 immediately below 27.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Mike Winkler, The algorithmic structure of the finite stopping time behavior of the 3x+ 1 function, arXiv:1709.03385 [math.GM], 2017.
Crossrefs
Programs
-
Haskell
a056576 = subtract 1 . a020914 -- Reinhard Zumkeller, May 17 2015
-
Maple
seq(ilog2(3^n), n= 0 .. 1000); # Robert Israel, Dec 11 2014
-
Mathematica
Table[Floor[Log[2, 3^n]], {n, 0, 69}] (* Robert G. Wilson v, Apr 06 2006 *) Table[Floor[n*Log[2, 3]], {n, 0, 68}] (* L. Edson Jeffery, Dec 11 2014 *)
-
PARI
{a(n) = if( n<0, 0, logint(3^n, 2))}; /* Michael Somos, Dec 13 2014 */
-
Python
def A056576(n): return (3**n).bit_length()-1 # Chai Wah Wu, Oct 09 2024
Formula
a(n) = A020914(n) - 1. - L. Edson Jeffery, Dec 12 2014
A102525 Decimal expansion of log(2)/log(3).
6, 3, 0, 9, 2, 9, 7, 5, 3, 5, 7, 1, 4, 5, 7, 4, 3, 7, 0, 9, 9, 5, 2, 7, 1, 1, 4, 3, 4, 2, 7, 6, 0, 8, 5, 4, 2, 9, 9, 5, 8, 5, 6, 4, 0, 1, 3, 1, 8, 8, 0, 4, 2, 7, 8, 7, 0, 6, 5, 4, 9, 4, 3, 8, 3, 8, 6, 8, 5, 2, 0, 1, 3, 8, 0, 9, 1, 4, 8, 0, 5, 0, 6, 1, 1, 7, 2, 6, 8, 8, 5, 4, 9, 4, 5, 1, 7, 4, 5, 5, 6, 1, 3, 5, 4
Offset: 0
Comments
log_3(2) is the Hausdorff dimension of the Cantor set.
Comment from Stanislav Sykora, Apr 19 2016: Twice this value is the Hausdorff dimension of the Koch curve, as well as of the 2D Cantor dust. Three times its value is the Hausdorff dimension of the Sierpinski carpet, as well as of the 3D Cantor dust. More in general, N times its value is the Hausdorff dimension of N-dimensional Cantor dust. This number is known to be transcendental.
Examples
log(2)/log(3) = 0.63092975357145743709952711434276085429958564...
References
- K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985, see p. 14.
- G. H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 5th Edition, Oxford University Press, ISBN 978-0198531715, 1979, p. 162.
- Nigel Lesmoir-Gordon, Will Rood and Ralph Edney, Introducing Fractal Geometry, Totem Books USA, Lanham, MD, 2001, page 28.
Links
- Turnbull WWW Server, Felix Hausdorff.
- Eric Weisstein's World of Mathematics, Cantor Set
- Eric Weisstein's World of Mathematics, Transcendental Number
- Wikipedia, Cantor set
- Wikipedia, Hausdorff dimension.
- Wikipedia, List of fractals by Hausdorff dimension
- Wikipedia, Koch snowflake
- Wikipedia, Sierpinski carpet
- Index entries for transcendental numbers
Programs
-
Maple
evalf(log(2)/log(3),100); # Bernard Schott, Feb 02 2023
-
Mathematica
RealDigits[Log[3, 2], 10, 111][[1]]
-
PARI
log(2)/log(3) \\ Altug Alkan, Apr 19 2016
Formula
Equals A100831 / 2.
Equals 1 / A020857. - Bernard Schott, Feb 02 2023
A020859 Decimal expansion of log_2(6).
2, 5, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1
Examples
2.58496250072115618...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[Log[2, 6], 10, 100][[1]] (* Vincenzo Librandi, Aug 29 2013 *)
-
PARI
log(6)/log(2) \\ Charles R Greathouse IV, Aug 06 2020
Formula
Equals 1+A020857. - R. J. Mathar, May 28 2008
A154847 Decimal expansion of log_2 (17).
4, 0, 8, 7, 4, 6, 2, 8, 4, 1, 2, 5, 0, 3, 3, 9, 4, 0, 8, 2, 5, 4, 0, 6, 6, 0, 1, 0, 8, 1, 0, 4, 0, 4, 3, 5, 4, 0, 1, 1, 2, 6, 7, 2, 8, 2, 3, 4, 4, 8, 2, 0, 6, 8, 8, 1, 2, 6, 6, 0, 9, 0, 6, 4, 3, 8, 6, 6, 9, 6, 5, 0, 9, 0, 4, 7, 3, 8, 2, 0, 6, 8, 2, 9, 7, 3, 4, 3, 1, 5, 1, 8, 4, 3, 6, 8, 4, 2, 7
Offset: 1
Examples
4.0874628412503394082540660108104043540112672823448206881266...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for transcendental numbers
Crossrefs
Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), this sequence, A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Programs
-
Mathematica
RealDigits[Log[2, 17], 10, 100][[1]] (* Vincenzo Librandi, Aug 29 2013 *)
A154909 Decimal expansion of log_4 (18).
2, 0, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1
Examples
2.0849625007211561814537389439478165087598144076924810604557...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for transcendental numbers
Crossrefs
Cf. A020857 (log_2(3)).
Cf. decimal expansion of log_4(m): A094148 (m=3), A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), this sequence, A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).
Programs
-
Mathematica
RealDigits[Log[4, 18], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)
Formula
Equals A020857+1/2. - R. J. Mathar, Feb 15 2025
Comments