A102539 Square array T(n,k) read by antidiagonals: T(n,k) = Product_{1<=i<=j<=k} (n+i+j-1)/(i+j-1).
2, 3, 4, 4, 10, 8, 5, 20, 35, 16, 6, 35, 112, 126, 32, 7, 56, 294, 672, 462, 64, 8, 84, 672, 2772, 4224, 1716, 128, 9, 120, 1386, 9504, 28314, 27456, 6435, 256, 10, 165, 2640, 28314, 151008, 306735, 183040, 24310, 512, 11, 220, 4719, 75504, 674817
Offset: 1
Examples
Square array T(n,k) begins: 2, 4, 8, 16, 32, 64, ... 3, 10, 35, 126, 462, 1716, ... 4, 20, 112, 672, 4224, 27456, ... 5, 35, 294, 2772, 28314, 306735, ... 6, 56, 672, 9504, 151008, 2617472, ... 7, 84, 1386, 28314, 674817, 18076916, ... ...
Links
Programs
-
Mathematica
T[n_, k_] := Product[(n + i + j - 1)/(i + j - 1), {i, 1, k}, {j, i, k}]; Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 06 2018 *)
Formula
It appears that T is identical to the reflected triangle A073165, i.e. T(n, k) = Prod[i=1..floor((k+1)/2), C(n+k+2i-1-(k mod 2), 4i-1-2(k mod 2))] / Prod[i=0..floor((k-1)/2), C(2k-2i-1, 2i)].
Comments