cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102595 Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges in which the maximal number of contiguous border edges starting from the root in both directions is equal to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 1, 4, 3, 4, 7, 20, 15, 8, 5, 42, 102, 72, 36, 15, 6, 245, 540, 366, 176, 70, 24, 7, 1428, 2950, 1944, 912, 355, 120, 35, 8, 8379, 16524, 10668, 4920, 1890, 636, 189, 48, 9, 49588, 94430, 60021, 27336, 10405, 3492, 1050, 280, 63, 10, 296010
Offset: 0

Views

Author

Emeric Deutsch, Jan 22 2005

Keywords

Comments

Row sums yield the ternary numbers (A001764).
T(n,0) = A102594(n).

Examples

			T(2,0)=T(2,1)=0, T(2,2)=3 because in all the noncrossing trees _\, /\ and /_, the maximal number of contiguous border edges starting from the root in both directions is equal to 2.
Triangle starts:
   1;
   0,   1;
   0,   0,  3;
   1,   4,  3,  4;
   7,  20, 15,  8,  5;
  42, 102, 72, 36, 15, 6;
  ...
		

Crossrefs

Programs

  • Maple
    G:=(g+z*g-t*z-2*z*g^2+t^2*(1-t)*z^3*g^2-2*t*(1-t)*z^2*g)/(1-t*z*g)^2: z:=w^2: b:=w*sqrt(3): g:=2*sin(arcsin(3*b/2)/3)/b: Gser:=simplify(series(G,w=0,24)): P[0]:=1: for n from 1 to 10 do P[n]:=sort(coeff(Gser,w^(2*n))) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    max = 20; z = w^2; b = w*Sqrt[3]; g = 2*(Sin[ ArcSin[3*(b/2)]/3]/b); gf = (g + z*g - t*z - 2*z*g^2 + t^2*(1 - t)*z^3*g^2 - 2*t*(1 - t)*z^2*g)/(1 - t*z*g)^2; se = Series[gf, {w, 0, max}]; Flatten[ Rest /@ DeleteCases[ (CoefficientList[t*#1, t] & ) /@ CoefficientList[se, w], {}]] (* Jean-François Alcover, Oct 05 2011, after Maple *)
  • PARI
    S(n)={my(g=1+serreverse(x/(1+x)^3 + O(x*x^n))); Vec((g + x*g - y*x - 2*x*g^2 + y^2*(1-y)*x^3*g^2 - 2*y*(1-y)*x^2*g)/(1 - y*x*g)^2)}
    my(v=S(10)); for(n=1, #v, my(p=v[n]); for(k=0, n-1, print1(polcoeff(p, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017

Formula

G.f.: G(t, z)=(g+zg-tz-2zg^2+t^2*(1-t)z^3*g^2-2t(1-t)z^2*g)/(1-tzg)^2, where g=1+zg^3 is the g.f. for the ternary numbers (A001764).