A102618 Numbers which are the sum of two positive cubes and divisible by 37.
370, 407, 1332, 2331, 2960, 3256, 4921, 5957, 8029, 8288, 9990, 10656, 10989, 12691, 12913, 13357, 13949, 14023, 14911, 16021, 16354, 17353, 18648, 18907, 19684, 19721, 20683, 22681, 23680, 24605, 24901, 26048, 27343, 30007, 30303, 32893, 34965, 35964, 36001, 36556, 37259, 39331, 39368, 39627
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 200000: # for terms <= N G:= expand(add(x^(i^3),i=1..floor(N^(1/3)))^2): select(t -> coeff(G,x,t) > 0, [seq(i,i=37..N,37)]); # Robert Israel, Jun 12 2020
-
Mathematica
upto[n_] := Block[{t}, Union@ Reap[ Do[If[ Mod[t = x^3 + y^3, 37] == 0, Sow@ t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3) ]}]][[2, 1]]]; upto[40000] (* Giovanni Resta, Jun 12 2020 *) stpcQ[n_]:=Count[IntegerPartitions[n,{2}],?(AllTrue[CubeRoot[#],IntegerQ]&)]>0; Select[37* Range[1100],stpcQ] (* _Harvey P. Dale, Jul 10 2024 *)
Extensions
Corrected by Robert Israel, Jun 12 2020