A102644 A006530(x)=2 is a local minimum if x=2^n. Running downward with argument x started at 2^n, the largest prime divisor should increase. The value of first peak is a(n).
2, 3, 7, 13, 31, 61, 127, 127, 73, 1021, 89, 4093, 8191, 16381, 151, 257, 131071, 131071, 524287, 1048573, 337, 683, 178481, 16777213, 1801, 8191, 262657, 1877171, 2089, 46684427, 2147483647, 2147483647, 599479, 3360037, 6871947673, 283007
Offset: 1
Keywords
Examples
n=20: 2^20=1048576; the largest prime divisors for arguments if running downward from 2^20 are as follows: {2,41,524287,1048573,73}. The first lower peak before argument 2^20=1048576 is a(20)=1048573. n=1: a(1)=2 the peak equals the central value because there are no prime divisors>0 below n=2^1=2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..150
Programs
-
Mathematica
Table[2 + Total@ TakeWhile[Differences@ Map[FactorInteger[#][[-1, 1]] &, TakeWhile[Range[2^n, 2^n - 20, -1], # > 0 &]], # > 0 &], {n, 36}] (* Michael De Vlieger, Jul 31 2017 *)
Comments