A102643 A006530(x)=2 is a local minimum if x=2^n. Running upward with argument x, the largest prime divisor should increase. The value of first peak is a(n).
3, 5, 11, 17, 17, 13, 43, 257, 257, 41, 683, 4099, 2731, 2731, 331, 65537, 65537, 262147, 174763, 174763, 61681, 199729, 2796203, 2796203, 4051, 9586981, 87211, 15790321, 15790321, 1073741827, 715827883, 715827883, 6700417, 26317, 86171
Offset: 1
Keywords
Examples
n=22: 2^22=4194304; largest prime divisors for n+j, j=0, 1, 2, ... are {2, 2113, 5419, 16981, 61681, 199729, 7109}. The first peak after 2^22=4194304 is a(22)=199729.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..150
Programs
-
Mathematica
Table[2 + Total@ TakeWhile[Differences@ Array[FactorInteger[#][[-1, 1]] &, 20, 2^n], # > 0 &], {n, 35}] (* Michael De Vlieger, Jul 31 2017 *)
Comments