A102662 Triangle read by rows: T(1,1)=1,T(2,1)=1,T(2,2)=3, T(k-1,r-1)+T(k-1,r)+T(k-2,r-1).
1, 1, 3, 1, 5, 3, 1, 7, 11, 3, 1, 9, 23, 17, 3, 1, 11, 39, 51, 23, 3, 1, 13, 59, 113, 91, 29, 3, 1, 15, 83, 211, 255, 143, 35, 3, 1, 17, 111, 353, 579, 489, 207, 41, 3, 1, 19, 143, 547, 1143, 1323, 839, 283, 47, 3, 1, 21, 179, 801, 2043, 3045, 2651, 1329, 371, 53, 3, 1, 23, 219
Offset: 1
Examples
Triangle begins: 1 1 3 1 5 3 1 7 11 3 1 9 23 17 3
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
Links
- Reinhard Zumkeller, Rows n=0..149 of triangle, flattened
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 37.
Programs
-
Haskell
a102662 n k = a102662_tabl !! n !! k a102662_row n = a102662_tabl !! n a102662_tabl = [1] : [1,3] : f [1] [1,3] where f xs ys = zs : f ys zs where zs = zipWith (+) ([0] ++ xs ++ [0]) $ zipWith (+) ([0] ++ ys) (ys ++ [0]) -- Reinhard Zumkeller, Feb 23 2012
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207624 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A102662 *) (* Clark Kimberling, Feb 20 2012 *)
-
PARI
T(k,r)=if(r>k,0,if(k==1,1,if(k==2,if(r==1,1,3),if(r==1,1,if(r==k,3,T(k-1,r-1)+T(k-1,r)+T(k-2,r-1)))))) BM(n) = M=matrix(n,n);for(i=1,n, for(j=1,n,M[i,j]=T(i,j)));M M=BM(10) for(i=1,10,s=0;for(j=1,i,s+=M[i,j]);print1(s,","))
Formula
From Clark Kimberling, Feb 20 2012: (Start)
u(n,x)=u(n-1,x)+v(n-1,x), v(n,x)=2*x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1; see the Mathematica section. (End)
Comments