A102675 Number of digits >= 5 in decimal representation of n.
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0
References
- Curtis Cooper, Number of large digits in the positive integers not exceeding n, Abstracts Amer. Math. Soc., 25 (No. 1, 2004), p. 38, Abstract 993-11-964.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=5 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..120); # Emeric Deutsch, Feb 23 2005
-
Mathematica
Table[Count[IntegerDigits[n],?(#>4&)],{n,0,120}] (* _Harvey P. Dale, Nov 13 2013 *)
Formula
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/2) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(5*10^j) - x^(10*10^j))/(1 - x^10^(j+1)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} x^(5*10^j)/(1 + x^(5*10^j)). (End)
Extensions
More terms from Emeric Deutsch, Feb 23 2005
Comments