cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A102685 Partial sums of A055640.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of nonzero digits occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor((n/10^j)+0.9)*(2n + 2 + (0.8 - floor((n/10^j)+0.9))*10^j) - floor(n/10^j)*(2n + 2 - (floor(n/10^j)+1) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A055640(n) + (1/2)*Sum_{j=1..m+1} ((8*floor((n/10^j)+0.9)/10 + floor(n/10^j))*10^j - (floor((n/10^j)+0.9)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = 9*m*10^(m-1). (This is the total number of nonzero digits occurring in all the numbers with <= m digits.)
G.f.: g(x) = (1/(1-x)^2) * Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)

A102683 Number of digits 9 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Crossrefs

Programs

  • Haskell
    a102683 =  length . filter (== '9') . show
    -- Reinhard Zumkeller, Dec 29 2011
  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=9 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    a[n_] := DigitCount[n, 10, 9]; Array[a, 100, 0] (* Amiram Eldar, Jul 24 2023 *)

Formula

a(A007095(n)) = 0; a(A011539(n)) > 0. - Reinhard Zumkeller, Dec 29 2011
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/10) - floor(n/10^j)), where m=floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(9*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(A235049(n)) = 0. - Reinhard Zumkeller, Apr 16 2014

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A277849 Number of digits '9' in the set of all numbers from 0 to A014824(n) = sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).

Original entry on oeis.org

0, 0, 1, 22, 343, 4664, 58985, 713306, 8367627, 96021949, 1083676281, 12071330713, 133058986145, 1454046651577, 15775034417009, 170096023182441, 1824417021947873, 19478738120713305, 207133060219478737, 2194787392318244180, 23182441824417009723
Offset: 0

Views

Author

M. F. Hasler, Nov 01 2016

Keywords

Examples

			For n = 2 there is only one digit '9' in the sequence 0, 1, 2, ..., 12.
For n = 3 there are 11 + 10 = 21 more digits '9' in { 19, 29, ..., 89, 90, ..., 99, 109, 119 }, where 99 accounts for two '9's.
		

Crossrefs

Programs

  • PARI
    print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==9,digits(k)))))
    
  • PARI
    A014824(n)=(10^n-1)*(10/81)-n/9;
    A102684(n)=my(pow,f,g,h);sum(j=1,#Str(n),pow=10^j;f=floor(n/pow);g=floor(n/pow+1/10);h=(4/5+g)*pow;g*(2*n+2-h)-f*(2*n+2-(1+f)*pow))/2;
    A277849(n)=A102684(A014824(n));
    vector(50,n,A277849(n-1)) \\ Lars Blomberg, Nov 11 2020

Formula

a(n) = A083449(n) = A277830(n) - 1 for 0 < n < 9.
a(n) = A277838(n) for n < 8, and a(8) = A277838(8) - 1.
More generally, for m = 0, ..., 9, let a[m] denote A277830, ..., A277838 and A277849, respectively. Then a[0](n) = a[n](n) = a[m](n) + 1 for all m > n >= 0, and a[m-1](n) = a[m](n) + (m+1)*10^(n-m) for all n >= m > 1.

Extensions

More terms from Lars Blomberg, Nov 05 2016
Replaced incorrect b-file by Lars Blomberg, Nov 11 2020
Showing 1-3 of 3 results.